Suppr超能文献

基于淀粉样蛋白PET/MRI图像,使用稀疏响应深度信念网络和极限学习机鉴别阿尔茨海默病、轻度认知障碍和正常对照

Use of a Sparse-Response Deep Belief Network and Extreme Learning Machine to Discriminate Alzheimer's Disease, Mild Cognitive Impairment, and Normal Controls Based on Amyloid PET/MRI Images.

作者信息

Zhou Ping, Jiang Shuqing, Yu Lun, Feng Yabo, Chen Chuxin, Li Fang, Liu Yang, Huang Zhongxiong

机构信息

Department of PET-CT Center, Chenzhou No.1 People's Hospital, Chenzhou, China.

出版信息

Front Med (Lausanne). 2021 Jan 18;7:621204. doi: 10.3389/fmed.2020.621204. eCollection 2020.

Abstract

In recent years, interest has grown in using computer-aided diagnosis (CAD) for Alzheimer's disease (AD) and its prodromal stage, mild cognitive impairment (MCI). However, existing CAD technologies often overfit data and have poor generalizability. In this study, we proposed a sparse-response deep belief network (SR-DBN) model based on rate distortion (RD) theory and an extreme learning machine (ELM) model to distinguish AD, MCI, and normal controls (NC). We used [F]-AV45 positron emission computed tomography (PET) and magnetic resonance imaging (MRI) images from 340 subjects enrolled in the ADNI database, including 116 AD, 82 MCI, and 142 NC subjects. The model was evaluated using five-fold cross-validation. In the whole model, fast principal component analysis (PCA) served as a dimension reduction algorithm. An SR-DBN extracted features from the images, and an ELM obtained the classification. Furthermore, to evaluate the effectiveness of our method, we performed comparative trials. In contrast experiment 1, the ELM was replaced by a support vector machine (SVM). Contrast experiment 2 adopted DBN without sparsity. Contrast experiment 3 consisted of fast PCA and an ELM. Contrast experiment 4 used a classic convolutional neural network (CNN) to classify AD. Accuracy, sensitivity, specificity, and area under the curve (AUC) were examined to validate the results. Our model achieved 91.68% accuracy, 95.47% sensitivity, 86.68% specificity, and an AUC of 0.87 separating between AD and NC groups; 87.25% accuracy, 79.74% sensitivity, 91.58% specificity, and an AUC of 0.79 separating MCI and NC groups; and 80.35% accuracy, 85.65% sensitivity, 72.98% specificity, and an AUC of 0.71 separating AD and MCI groups, which gave better classification than other models assessed.

摘要

近年来,利用计算机辅助诊断(CAD)来诊断阿尔茨海默病(AD)及其前驱阶段——轻度认知障碍(MCI)的关注度不断提高。然而,现有的CAD技术往往会过度拟合数据,泛化能力较差。在本研究中,我们提出了一种基于率失真(RD)理论的稀疏响应深度信念网络(SR-DBN)模型和一种极限学习机(ELM)模型,用于区分AD、MCI和正常对照(NC)。我们使用了来自阿尔茨海默病神经影像倡议(ADNI)数据库中340名受试者的[F]-AV45正电子发射计算机断层扫描(PET)和磁共振成像(MRI)图像,其中包括116名AD患者、82名MCI患者和142名NC受试者。该模型采用五折交叉验证进行评估。在整个模型中,快速主成分分析(PCA)用作降维算法。一个SR-DBN从图像中提取特征,一个ELM进行分类。此外,为了评估我们方法的有效性,我们进行了对比试验。在对比实验1中,ELM被支持向量机(SVM)取代。对比实验2采用了无稀疏性的深度信念网络(DBN)。对比实验3由快速PCA和ELM组成。对比实验4使用经典卷积神经网络(CNN)对AD进行分类。通过检查准确率、灵敏度、特异性和曲线下面积(AUC)来验证结果。我们的模型在区分AD和NC组时,准确率达到91.68%,灵敏度达到95.47%,特异性达到86.68%,AUC为0.87;在区分MCI和NC组时,准确率为87.25%,灵敏度为79.74%,特异性为91.58%,AUC为0.79;在区分AD和MCI组时,准确率为80.35%,灵敏度为85.65%,特异性为72.98%,AUC为0.71,其分类效果优于其他评估模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9c37/7847932/8cbb6bd53aaf/fmed-07-621204-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验