CSE Department, Bennett University, Greater Noida, UP, India.
Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), Cagliari, Italy.
Med Biol Eng Comput. 2021 Mar;59(3):511-533. doi: 10.1007/s11517-021-02322-0. Epub 2021 Feb 5.
Wilson's disease (WD) is caused by copper accumulation in the brain and liver, and if not treated early, can lead to severe disability and death. WD has shown white matter hyperintensity (WMH) in the brain magnetic resonance scans (MRI) scans, but the diagnosis is challenging due to (i) subtle intensity changes and (ii) weak training MRI when using artificial intelligence (AI). Design and validate seven types of high-performing AI-based computer-aided design (CADx) systems consisting of 3D optimized classification, and characterization of WD against controls. We propose a "conventional deep convolution neural network" (cDCNN) and an "improved DCNN" (iDCNN) where rectified linear unit (ReLU) activation function was modified ensuring "differentiable at zero." Three-dimensional optimization was achieved by recording accuracy while changing the CNN layers and augmentation by several folds. WD was characterized using (i) CNN-based feature map strength and (ii) Bispectrum strengths of pixels having higher probabilities of WD. We further computed the (a) area under the curve (AUC), (b) diagnostic odds ratio (DOR), (c) reliability, and (d) stability and (e) benchmarking. Optimal results were achieved using 9 layers of CNN, with 4-fold augmentation. iDCNN yields superior performance compared to cDCNN with accuracy and AUC of 98.28 ± 1.55, 0.99 (p < 0.0001), and 97.19 ± 2.53%, 0.984 (p < 0.0001), respectively. DOR of iDCNN outperformed cDCNN fourfold. iDCNN also outperformed (a) transfer learning-based "Inception V3" paradigm by 11.92% and (b) four types of "conventional machine learning-based systems": k-NN, decision tree, support vector machine, and random forest by 55.13%, 28.36%, 15.35%, and 14.11%, respectively. The AI-based systems can potentially be useful in the early WD diagnosis. Graphical Abstract.
威尔逊病(WD)是由大脑和肝脏中的铜积累引起的,如果不早期治疗,可能导致严重的残疾和死亡。WD 在脑磁共振扫描(MRI)中显示出脑白质高信号(WMH),但由于(i)强度变化细微和(ii)使用人工智能(AI)时弱训练 MRI,因此诊断具有挑战性。设计并验证了七种高性能基于人工智能的计算机辅助设计(CADx)系统,这些系统由 3D 优化分类组成,并对 WD 与对照进行分类和特征描述。我们提出了一种“常规深度卷积神经网络”(cDCNN)和一种“改进的 DCNN”(iDCNN),其中修正线性单元(ReLU)激活函数进行了修改,以确保“在零处可微分”。通过改变 CNN 层和增加几倍的记录准确性来实现三维优化。使用(i)基于 CNN 的特征图强度和(ii)具有更高 WD 概率的像素的双谱强度来对 WD 进行特征描述。我们进一步计算了(a)曲线下面积(AUC)、(b)诊断优势比(DOR)、(c)可靠性和(d)稳定性以及(e)基准测试。使用 9 层 CNN 和 4 倍增强获得了最佳结果。iDCNN 的性能优于 cDCNN,其准确性和 AUC 分别为 98.28 ± 1.55%和 0.99(p < 0.0001),97.19 ± 2.53%和 0.984(p < 0.0001)。iDCNN 的 DOR 是 cDCNN 的四倍。iDCNN 还优于(a)基于迁移学习的“Inception V3”范例,高出 11.92%,(b)基于四种“常规机器学习的系统”:k-NN、决策树、支持向量机和随机森林,高出 55.13%、28.36%、15.35%和 14.11%。基于 AI 的系统在早期 WD 诊断中可能具有潜在用途。