Department of Biostatistics, University of California, Los Angeles, CA, 90024, USA.
Department of Radiology, University of California, Los Angeles, CA, 90024, USA.
Med Phys. 2021 May;48(5):2458-2467. doi: 10.1002/mp.14754. Epub 2021 Mar 19.
Domain knowledge (DK) acquired from prior studies is important for medical diagnosis. This paper leverages the population-level DK using an optimality design criterion to train a deep learning model in an end-to-end manner. In this study, the problem of interest is at the patient level to diagnose a subject with idiopathic pulmonary fibrosis (IPF) among subjects with interstitial lung disease (ILD) using a computed tomography (CT). IPF diagnosis is a complicated process with multidisciplinary discussion with experts and is subject to interobserver variability, even for experienced radiologists. To this end, we propose a new statistical method to construct a time/memory-efficient IPF diagnosis model using axial chest CT and DK, along with an optimality design criterion via a DK-enhanced loss function of deep learning.
Four state-of-the-art two-dimensional convolutional neural network (2D-CNN) architectures (MobileNet, VGG16, ResNet-50, and DenseNet-121) and one baseline 2D-CNN are implemented to automatically diagnose IPF among ILD patients. Axial lung CT images are retrospectively acquired from 389 IPF patients and 700 non-IPF ILD patients in five multicenter clinical trials. To enrich the sample size and boost model performance, we sample 20 three-slice samples (triplets) from each CT scan, where these three slices are randomly selected from the top, middle, and bottom of both lungs respectively. Model performance is evaluated using a fivefold cross-validation, where each fold was stratified using a fixed proportion of IPF vs non-IPF.
Using DK-enhanced loss function increases the model performance of the baseline CNN model from 0.77 to 0.89 in terms of study-wise accuracy. Four other well-developed models reach satisfactory model performance with an overall accuracy >0.95 but the benefits brought on by the DK-enhanced loss function is not noticeable.
We believe this is the first attempt that (a) uses population-level DK with an optimal design criterion to train deep learning-based diagnostic models in an end-to-end manner and (b) focuses on patient-level IPF diagnosis. Further evaluation of using population-level DK on prospective studies is warranted and is underway.
从先前研究中获得的领域知识(DK)对于医学诊断很重要。本文利用基于最优性设计准则的人群水平 DK,以端到端的方式训练深度学习模型。在这项研究中,感兴趣的问题是在患者水平上,使用计算机断层扫描(CT)对间质性肺疾病(ILD)患者中的特发性肺纤维化(IPF)患者进行诊断。IPF 诊断是一个复杂的过程,需要多学科专家讨论,并受到观察者间变异性的影响,即使是有经验的放射科医生也是如此。为此,我们提出了一种新的统计方法,使用轴向胸部 CT 和 DK 以及通过 DK 增强的深度学习损失函数来构建一个时间/内存效率高的 IPF 诊断模型。
实施了四种最先进的二维卷积神经网络(2D-CNN)架构(MobileNet、VGG16、ResNet-50 和 DenseNet-121)和一种基线 2D-CNN,以自动诊断ILD 患者中的 IPF。从五个多中心临床试验中的 389 名 IPF 患者和 700 名非 IPFILD 患者中回顾性采集轴向肺部 CT 图像。为了丰富样本量并提高模型性能,我们从每个 CT 扫描中随机抽取 20 个三切片样本(三联体),这些切片分别从双肺的顶部、中部和底部随机选择。使用五重交叉验证评估模型性能,其中每个折都使用固定的 IPF 与非 IPF 比例进行分层。
使用 DK 增强的损失函数将基线 CNN 模型的性能从 0.77 提高到了 0.89,在研究准确性方面有所提高。其他四个开发良好的模型的整体准确率>0.95,达到了令人满意的模型性能,但 DK 增强的损失函数带来的好处并不明显。
我们相信这是首次尝试(a)使用基于最优性设计准则的人群水平 DK,以端到端的方式训练基于深度学习的诊断模型,(b)关注患者水平的 IPF 诊断。需要进一步评估在前瞻性研究中使用人群水平 DK 的效果,目前正在进行中。