Suppr超能文献

使用计算机断层扫描 (CT) 进行端到端领域知识辅助的特发性肺纤维化 (IPF) 自动诊断。

End-to-end domain knowledge-assisted automatic diagnosis of idiopathic pulmonary fibrosis (IPF) using computed tomography (CT).

机构信息

Department of Biostatistics, University of California, Los Angeles, CA, 90024, USA.

Department of Radiology, University of California, Los Angeles, CA, 90024, USA.

出版信息

Med Phys. 2021 May;48(5):2458-2467. doi: 10.1002/mp.14754. Epub 2021 Mar 19.

Abstract

PURPOSE

Domain knowledge (DK) acquired from prior studies is important for medical diagnosis. This paper leverages the population-level DK using an optimality design criterion to train a deep learning model in an end-to-end manner. In this study, the problem of interest is at the patient level to diagnose a subject with idiopathic pulmonary fibrosis (IPF) among subjects with interstitial lung disease (ILD) using a computed tomography (CT). IPF diagnosis is a complicated process with multidisciplinary discussion with experts and is subject to interobserver variability, even for experienced radiologists. To this end, we propose a new statistical method to construct a time/memory-efficient IPF diagnosis model using axial chest CT and DK, along with an optimality design criterion via a DK-enhanced loss function of deep learning.

METHODS

Four state-of-the-art two-dimensional convolutional neural network (2D-CNN) architectures (MobileNet, VGG16, ResNet-50, and DenseNet-121) and one baseline 2D-CNN are implemented to automatically diagnose IPF among ILD patients. Axial lung CT images are retrospectively acquired from 389 IPF patients and 700 non-IPF ILD patients in five multicenter clinical trials. To enrich the sample size and boost model performance, we sample 20 three-slice samples (triplets) from each CT scan, where these three slices are randomly selected from the top, middle, and bottom of both lungs respectively. Model performance is evaluated using a fivefold cross-validation, where each fold was stratified using a fixed proportion of IPF vs non-IPF.

RESULTS

Using DK-enhanced loss function increases the model performance of the baseline CNN model from 0.77 to 0.89 in terms of study-wise accuracy. Four other well-developed models reach satisfactory model performance with an overall accuracy >0.95 but the benefits brought on by the DK-enhanced loss function is not noticeable.

CONCLUSIONS

We believe this is the first attempt that (a) uses population-level DK with an optimal design criterion to train deep learning-based diagnostic models in an end-to-end manner and (b) focuses on patient-level IPF diagnosis. Further evaluation of using population-level DK on prospective studies is warranted and is underway.

摘要

目的

从先前研究中获得的领域知识(DK)对于医学诊断很重要。本文利用基于最优性设计准则的人群水平 DK,以端到端的方式训练深度学习模型。在这项研究中,感兴趣的问题是在患者水平上,使用计算机断层扫描(CT)对间质性肺疾病(ILD)患者中的特发性肺纤维化(IPF)患者进行诊断。IPF 诊断是一个复杂的过程,需要多学科专家讨论,并受到观察者间变异性的影响,即使是有经验的放射科医生也是如此。为此,我们提出了一种新的统计方法,使用轴向胸部 CT 和 DK 以及通过 DK 增强的深度学习损失函数来构建一个时间/内存效率高的 IPF 诊断模型。

方法

实施了四种最先进的二维卷积神经网络(2D-CNN)架构(MobileNet、VGG16、ResNet-50 和 DenseNet-121)和一种基线 2D-CNN,以自动诊断ILD 患者中的 IPF。从五个多中心临床试验中的 389 名 IPF 患者和 700 名非 IPFILD 患者中回顾性采集轴向肺部 CT 图像。为了丰富样本量并提高模型性能,我们从每个 CT 扫描中随机抽取 20 个三切片样本(三联体),这些切片分别从双肺的顶部、中部和底部随机选择。使用五重交叉验证评估模型性能,其中每个折都使用固定的 IPF 与非 IPF 比例进行分层。

结果

使用 DK 增强的损失函数将基线 CNN 模型的性能从 0.77 提高到了 0.89,在研究准确性方面有所提高。其他四个开发良好的模型的整体准确率>0.95,达到了令人满意的模型性能,但 DK 增强的损失函数带来的好处并不明显。

结论

我们相信这是首次尝试(a)使用基于最优性设计准则的人群水平 DK,以端到端的方式训练基于深度学习的诊断模型,(b)关注患者水平的 IPF 诊断。需要进一步评估在前瞻性研究中使用人群水平 DK 的效果,目前正在进行中。

相似文献

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验