Zhang Lei, Gao Shuang, Lin Xiaoyuan, Hu Junjie, Zhang Guolin, Tang Wei, Hu Yubo, Wang Yuanpeng, Chu Liang
Department of General Surgery, The Second Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China.
Graduate School of Bengbu Medical University, Bengbu, Anhui, China.
Front Surg. 2025 May 12;12:1589875. doi: 10.3389/fsurg.2025.1589875. eCollection 2025.
BACKGROUND: To construct a prognostic model for predicting cancer-specific survival in lymph node-positive colorectal cancer patients treated with adjuvant chemotherapy after surgery. METHODS: Data were collected from the 2010-2015 SEER database and from CRC patients at the Second Affiliated Hospital of Bengbu Medical University (2017-2023). Lasso regression and random survival forest methods were used to screen ten clinicopathologic features. Cox regression analysis identified independent prognostic factors for CRC. Nomogram plot model was used to predict 1-, 3-, and 5-year survival rates, with its accuracy verified through ROC curves, calibration curves, and decision curve analysis (DCA). The X-tile software differentiated between high and low-risk groups and illustrated survival differences using Kaplan-Meier curves. RESULTS: Age, histologic grade, stage, CEA, nerve invasion, and LNR were independent prognostic risk factors for colorectal cancer ( < 0.001); and LNR were the five variables used to construct the Nomogram. The area under the curve (AUC) was 0.83, 0.85, and 0.84 at 1, 3, and 5 years for the training cohort; 0.83, 0.85, and 0.84 at 1, 3, and 5 years for the internal validation cohort; and 0.83, 0.85, and 0.84 at 1, 3, and 5 years for the external validation cohort, respectively. calibration curves, C-indexes, and DCA curves validated the accuracy of the model, respectively. The survival prognosis of the high-risk group was lower than that of the low-risk group in all three data sets. (HR = 6.37, CI:6.05-6.71, < 0.05; HR = 7.05, CI:6.52-7.64, < 0.05; HR = 2.69, CI:1.66-4.37, < 0.05). CONCLUSIONS: LNR represents a new independent prognostic factor for lymph node-positive CRC. The optimal threshold determined by the Nomogram method effectively categorizes subgroups of lymph node-positive CRC cases after surgical chemotherapy, crucial for guiding clinical treatment strategy selection.
背景:构建一个预测术后接受辅助化疗的淋巴结阳性结直肠癌患者癌症特异性生存的预后模型。 方法:收集2010 - 2015年SEER数据库以及蚌埠医学院第二附属医院(2017 - 2023年)的结直肠癌患者数据。采用套索回归和随机生存森林方法筛选出10个临床病理特征。Cox回归分析确定结直肠癌的独立预后因素。使用列线图模型预测1年、3年和5年生存率,并通过ROC曲线、校准曲线和决策曲线分析(DCA)验证其准确性。X-tile软件区分高风险组和低风险组,并使用Kaplan-Meier曲线说明生存差异。 结果:年龄、组织学分级、分期、癌胚抗原(CEA)、神经侵犯和淋巴结转移率(LNR)是结直肠癌的独立预后危险因素(<0.001);LNR是用于构建列线图的5个变量。训练队列在1年、3年和5年时的曲线下面积(AUC)分别为0.83、0.85和0.84;内部验证队列在1年、3年和5年时分别为0.83、0.85和0.84;外部验证队列在1年、3年和5年时分别为0.83、0.85和0.84。校准曲线、C指数和DCA曲线分别验证了模型的准确性。在所有三个数据集中,高风险组的生存预后均低于低风险组(HR = 6.37,CI:6.05 - 6.71,<0.05;HR = 7.05,CI:6.52 - 7.64,<0.05;HR = 2.69,CI:1.66 - 并使用Kaplan-Meier曲线说明生存差异。 结果:年龄、组织学分级、分期、癌胚抗原(CEA)、神经侵犯和淋巴结转移率(LNR)是结直肠癌的独立预后危险因素(<0.001);LNR是用于构建列线图的5个变量。训练队列在1年、3年和5年时的曲线下面积(AUC)分别为0.83、0.85和0.84;内部验证队列在1年、3年和5年时分别为0.83、0.85和0.84;外部验证队列在1年、3年和5年时分别为0.83、0.85和0.84。校准曲线、C指数和DCA曲线分别验证了模型的准确性。在所有三个数据集中,高风险组的生存预后均低于低风险组(HR = 6.37,CI:6.05 - 6.71,<0.05;HR = 7.05,CI:6.52 - 7.64,<0.05;HR = 2.69,CI:1.66 - 4.37,<0.05)。 结论:LNR是淋巴结阳性结直肠癌的一个新的独立预后因素。通过列线图方法确定的最佳阈值有效地对手术化疗后淋巴结阳性结直肠癌病例的亚组进行了分类,这对于指导临床治疗策略的选择至关重要。
Nat Rev Clin Oncol. 2024-1
Prz Gastroenterol. 2023