Suppr超能文献

严重急性呼吸综合征冠状病毒2(SARS-CoV-2)在高温下会迅速失活。

SARS-CoV-2 is rapidly inactivated at high temperature.

作者信息

Biryukov Jennifer, Boydston Jeremy A, Dunning Rebecca A, Yeager John J, Wood Stewart, Ferris Allison, Miller David, Weaver Wade, Zeitouni Nathalie E, Freeburger Denise, Dabisch Paul, Wahl Victoria, Hevey Michael C, Altamura Louis A

机构信息

National Biodefense Analysis and Countermeasures Center (NBACC), Operated By Battelle National Biodefense Institute (BNBI) for the U.S. Department of Homeland Security Science and Technology Directorate, Fort Detrick, MD 21702 USA.

出版信息

Environ Chem Lett. 2021;19(2):1773-1777. doi: 10.1007/s10311-021-01187-x. Epub 2021 Feb 3.

Abstract

In the absence of a vaccine, preventing the spread of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the primary means to reduce the impact of the 2019 coronavirus disease (COVID-19). Multiple studies have reported the presence of SARS-CoV-2 genetic material on surfaces suggesting that fomite transmission of SARS-CoV-2 is feasible. High temperature inactivation of virus has been previously suggested, but not shown. In the present study, we investigated the environmental stability of SARS-CoV-2 in a clinically relevant matrix dried onto stainless steel at a high temperature. The results show that at 54.5 °C, the virus half-life was 10.8 ± 3.0 min and the time for a 90% decrease in infectivity was 35.4 ± 9.0 min. These findings suggest that in instances where the environment can reach temperatures of at least 54.5 °C, such as in vehicle interior cabins when parked in warmer ambient air, that the potential for exposure to infectious virus on surfaces could be decreased substantially in under an hour.

摘要

在没有疫苗的情况下,预防严重急性呼吸综合征冠状病毒2(SARS-CoV-2)的传播是减轻2019冠状病毒病(COVID-19)影响的主要手段。多项研究报告称在物体表面存在SARS-CoV-2遗传物质,这表明SARS-CoV-2通过污染物传播是可行的。此前曾有人提出病毒可通过高温灭活,但尚未得到证实。在本研究中,我们调查了SARS-CoV-2在高温下干燥于不锈钢上的临床相关基质中的环境稳定性。结果表明,在54.5°C时,病毒半衰期为10.8±3.0分钟,感染力降低90%所需的时间为35.4±9.0分钟。这些发现表明,在环境温度至少可达54.5°C的情况下,例如停在温暖环境空气中时的汽车内部座舱,表面接触传染性病毒的可能性可在一小时内大幅降低。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4985/8550683/d954d26b1bb2/10311_2021_1187_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验