Yang Benjamin A, Westerhof Trisha M, Sabin Kaitlyn, Merajver Sofia D, Aguilar Carlos A
Department of Biomedical Engineering and Biointerfaces Institute 2800 Plymouth Road, North Campus Research Complex Ann Arbor MI A10-183 USA.
Department of Internal Medicine Division of Hematology/Oncology and Rogel Cancer Center 1500 East Medical Center Drive, Rogel Cancer Center Ann Arbor MI 7314 USA.
Adv Sci (Weinh). 2020 Dec 21;8(3):2002825. doi: 10.1002/advs.202002825. eCollection 2021 Feb.
All multicellular organisms rely on intercellular communication networks to coordinate physiological functions. As members of a dynamic social network, each cell receives, processes, and redistributes biological information to define and maintain tissue homeostasis. Uncovering the molecular programs underlying these processes is critical for prevention of disease and aging and development of therapeutics. The study of intercellular communication requires techniques that reduce the scale and complexity of in vivo biological networks while resolving the molecular heterogeneity in "omic" layers that contribute to cell state and function. Recent advances in microengineering and high-throughput genomics offer unprecedented spatiotemporal control over cellular interactions and the ability to study intercellular communication in a high-throughput and mechanistic manner. Herein, this review discusses how salient engineered approaches and sequencing techniques can be applied to understand collective cell behavior and tissue functions.
所有多细胞生物都依赖细胞间通讯网络来协调生理功能。作为动态社交网络的成员,每个细胞接收、处理和重新分配生物信息,以定义和维持组织稳态。揭示这些过程背后的分子程序对于预防疾病、衰老以及开发治疗方法至关重要。细胞间通讯的研究需要能够降低体内生物网络规模和复杂性,同时解析促成细胞状态和功能的“组学”层面分子异质性的技术。微工程和高通量基因组学的最新进展为细胞间相互作用提供了前所未有的时空控制,并能够以高通量和机制性方式研究细胞间通讯。在此,本综述讨论了如何应用显著的工程方法和测序技术来理解集体细胞行为和组织功能。