Zormpas-Petridis Konstantinos, Noguera Rosa, Ivankovic Daniela Kolarevic, Roxanis Ioannis, Jamin Yann, Yuan Yinyin
Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom.
Department of Pathology, Medical School, University of Valencia-INCLIVA Biomedical Health Research Institute, Valencia, Spain.
Front Oncol. 2021 Jan 20;10:586292. doi: 10.3389/fonc.2020.586292. eCollection 2020.
High computational cost associated with digital pathology image analysis approaches is a challenge towards their translation in routine pathology clinic. Here, we propose a computationally efficient framework (SuperHistopath), designed to map global context features reflecting the rich tumor morphological heterogeneity. SuperHistopath efficiently combines i) a segmentation approach using the linear iterative clustering (SLIC) superpixels algorithm applied directly on the whole-slide images at low resolution (5x magnification) to adhere to region boundaries and form homogeneous spatial units at tissue-level, followed by ii) classification of superpixels using a convolution neural network (CNN). To demonstrate how versatile SuperHistopath was in accomplishing histopathology tasks, we classified tumor tissue, stroma, necrosis, lymphocytes clusters, differentiating regions, fat, hemorrhage and normal tissue, in 127 melanomas, 23 triple-negative breast cancers, and 73 samples from transgenic mouse models of high-risk childhood neuroblastoma with high accuracy (98.8%, 93.1% and 98.3% respectively). Furthermore, SuperHistopath enabled discovery of significant differences in tumor phenotype of neuroblastoma mouse models emulating genomic variants of high-risk disease, and stratification of melanoma patients (high ratio of lymphocyte-to-tumor superpixels (p = 0.015) and low stroma-to-tumor ratio (p = 0.028) were associated with a favorable prognosis). Finally, SuperHistopath is efficient for annotation of ground-truth datasets (as there is no need of boundary delineation), training and application (~5 min for classifying a whole-slide image and as low as ~30 min for network training). These attributes make SuperHistopath particularly attractive for research in rich datasets and could also facilitate its adoption in the clinic to accelerate pathologist workflow with the quantification of phenotypes, predictive/prognosis markers.
数字病理学图像分析方法所涉及的高计算成本是其在常规病理学临床应用中面临的一项挑战。在此,我们提出了一个计算效率高的框架(SuperHistopath),旨在映射反映丰富肿瘤形态异质性的全局上下文特征。SuperHistopath有效地结合了:i)一种分割方法,该方法使用线性迭代聚类(SLIC)超像素算法直接应用于低分辨率(5倍放大)的全切片图像,以贴合区域边界并在组织层面形成均匀的空间单元,随后ii)使用卷积神经网络(CNN)对超像素进行分类。为了证明SuperHistopath在完成组织病理学任务方面的通用性,我们对127例黑色素瘤、23例三阴性乳腺癌以及73例高危儿童神经母细胞瘤转基因小鼠模型的样本中的肿瘤组织、基质、坏死、淋巴细胞簇、分化区域、脂肪、出血和正常组织进行了分类,准确率分别高达98.8%、93.1%和98.3%。此外,SuperHistopath能够发现模拟高危疾病基因组变异的神经母细胞瘤小鼠模型在肿瘤表型上的显著差异,并对黑色素瘤患者进行分层(淋巴细胞与肿瘤超像素的高比例(p = 0.015)和基质与肿瘤的低比例(p = 0.028)与良好预后相关)。最后,SuperHistopath在标注真实数据集(因为无需边界描绘)、训练和应用方面效率很高(对一张全切片图像进行分类约需5分钟,网络训练时间低至约30分钟)。这些特性使得SuperHistopath在丰富数据集的研究中特别有吸引力,也有助于其在临床中得到应用,通过对表型、预测/预后标志物进行量化来加速病理学家的工作流程。