Navaratna Ruvini, Zhao Ruiyang, Colgan Timothy J, Hu Houchun Harry, Bydder Mark, Yokoo Takeshi, Bashir Mustafa R, Middleton Michael S, Serai Suraj D, Malyarenko Dariya, Chenevert Thomas, Smith Mark, Henderson Walter, Hamilton Gavin, Shu Yunhong, Sirlin Claude B, Tkach Jean A, Trout Andrew T, Brittain Jean H, Hernando Diego, Reeder Scott B
Department of Medical Physics, University of Wisconsin - Madison, Madison, Wisconsin, USA.
Department of Radiology, University of Wisconsin - Madison, Madison, Wisconsin, USA.
Magn Reson Med. 2021 Jul;86(1):69-81. doi: 10.1002/mrm.28669. Epub 2021 Feb 9.
Chemical shift-encoded MRI (CSE-MRI) is well-established to quantify proton density fat fraction (PDFF) as a quantitative biomarker of hepatic steatosis. However, temperature is known to bias PDFF estimation in phantom studies. In this study, strategies were developed and evaluated to correct for the effects of temperature on PDFF estimation through simulations, temperature-controlled experiments, and a multi-center, multi-vendor phantom study.
A technical solution that assumes and automatically estimates a uniform, global temperature throughout the phantom is proposed. Computer simulations modeled the effect of temperature on PDFF estimation using magnitude-, complex-, and hybrid-based CSE-MRI methods. Phantom experiments were performed to assess the temperature correction on PDFF estimation at controlled phantom temperatures. To assess the temperature correction method on a larger scale, the proposed method was applied to data acquired as part of a nine-site multi-vendor phantom study and compared to temperature-corrected PDFF estimation using an a priori guess for ambient room temperature.
Simulations and temperature-controlled experiments show that as temperature deviates further from the assumed temperature, PDFF bias increases. Using the proposed correction method and a reasonable a priori guess for ambient temperature, PDFF bias and variability were reduced using magnitude-based CSE-MRI, across MRI systems, field strengths, protocols, and varying phantom temperature. Complex and hybrid methods showed little PDFF bias and variability both before and after correction.
Correction for temperature reduces temperature-related PDFF bias and variability in phantoms across MRI vendors, sites, field strengths, and protocols for magnitude-based CSE-MRI, even without a priori information about the temperature.
化学位移编码磁共振成像(CSE-MRI)已被广泛用于量化质子密度脂肪分数(PDFF),作为肝脂肪变性的定量生物标志物。然而,在体模研究中,温度已知会使PDFF估计产生偏差。在本研究中,通过模拟、温度控制实验以及多中心、多厂商体模研究,开发并评估了校正温度对PDFF估计影响的策略。
提出了一种假设并自动估计体模内均匀全局温度的技术方案。计算机模拟使用基于幅度、复数和混合的CSE-MRI方法,对温度对PDFF估计的影响进行建模。在体模温度受控的情况下进行体模实验,以评估温度校正对PDFF估计的影响。为了在更大规模上评估温度校正方法,将所提出的方法应用于作为九站点多厂商体模研究一部分采集的数据,并与使用环境室温的先验猜测进行温度校正的PDFF估计进行比较。
模拟和温度控制实验表明,随着温度偏离假设温度越远,PDFF偏差越大。使用所提出的校正方法和对环境温度的合理先验猜测,基于幅度的CSE-MRI在不同的MRI系统、场强、协议以及不同的体模温度下,PDFF偏差和变异性均有所降低。复数和混合方法在校正前后均显示出较小的PDFF偏差和变异性。
即使没有关于温度的先验信息,温度校正也能减少基于幅度的CSE-MRI在不同MRI厂商、站点、场强和协议的体模中与温度相关的PDFF偏差和变异性。