IEEE Trans Med Imaging. 2021 May;40(5):1508-1518. doi: 10.1109/TMI.2021.3058373. Epub 2021 Apr 30.
Optical diffraction tomography measures the three-dimensional refractive index map of a specimen and visualizes biochemical phenomena at the nanoscale in a non-destructive manner. One major drawback of optical diffraction tomography is poor axial resolution due to limited access to the three-dimensional optical transfer function. This missing cone problem has been addressed through regularization algorithms that use a priori information, such as non-negativity and sample smoothness. However, the iterative nature of these algorithms and their parameter dependency make real-time visualization impossible. In this article, we propose and experimentally demonstrate a deep neural network, which we term DeepRegularizer, that rapidly improves the resolution of a three-dimensional refractive index map. Trained with pairs of datasets (a raw refractive index tomogram and a resolution-enhanced refractive index tomogram via the iterative total variation algorithm), the three-dimensional U-net-based convolutional neural network learns a transformation between the two tomogram domains. The feasibility and generalizability of our network are demonstrated using bacterial cells and a human leukaemic cell line, and by validating the model across different samples. DeepRegularizer offers more than an order of magnitude faster regularization performance compared to the conventional iterative method. We envision that the proposed data-driven approach can bypass the high time complexity of various image reconstructions in other imaging modalities.
光学衍射层析术测量样本的三维折射率图,并以非破坏性的方式可视化纳米尺度的生化现象。光学衍射层析术的一个主要缺点是由于对三维光传递函数的访问有限,轴向分辨率较差。通过使用先验信息(例如非负性和样本平滑度)的正则化算法解决了这个缺失锥问题。然而,这些算法的迭代性质及其参数依赖性使得实时可视化成为不可能。在本文中,我们提出并实验证明了一种深度神经网络,我们称之为 DeepRegularizer,它可以快速提高三维折射率图的分辨率。通过使用数据集对(原始折射率层析图和通过迭代全变分算法增强分辨率的折射率层析图)进行训练,基于三维 U 形网络的卷积神经网络学习两个层析图域之间的转换。我们使用细菌细胞和人类白血病细胞系证明了我们的网络的可行性和通用性,并通过在不同样本上验证模型来证明其通用性。与传统的迭代方法相比,DeepRegularizer 的正则化性能快了一个数量级以上。我们设想,所提出的数据驱动方法可以绕过其他成像模式中各种图像重建的高时间复杂度。