Suppr超能文献

迈向在天气和气候中实现人工智能后处理:牛津 2019 研讨会提出的行动。

Towards implementing artificial intelligence post-processing in weather and climate: proposed actions from the Oxford 2019 workshop.

机构信息

Research Applications Laboratory, National Center for Atmospheric Research, Boulder, CO, USA.

Scripps Institute of Oceanography, La Jolla, CA, USA.

出版信息

Philos Trans A Math Phys Eng Sci. 2021 Apr 5;379(2194):20200091. doi: 10.1098/rsta.2020.0091. Epub 2021 Feb 15.

Abstract

The most mature aspect of applying artificial intelligence (AI)/machine learning (ML) to problems in the atmospheric sciences is likely post-processing of model output. This article provides some history and current state of the science of post-processing with AI for weather and climate models. Deriving from the discussion at the 2019 Oxford workshop on Machine Learning for Weather and Climate, this paper also presents thoughts on medium-term goals to advance such use of AI, which include assuring that algorithms are trustworthy and interpretable, adherence to FAIR data practices to promote usability, and development of techniques that leverage our physical knowledge of the atmosphere. The coauthors propose several actionable items and have initiated one of those: a repository for datasets from various real weather and climate problems that can be addressed using AI. Five such datasets are presented and permanently archived, together with Jupyter notebooks to process them and assess the results in comparison with a baseline technique. The coauthors invite the readers to test their own algorithms in comparison with the baseline and to archive their results. This article is part of the theme issue 'Machine learning for weather and climate modelling'.

摘要

将人工智能 (AI)/机器学习 (ML) 应用于大气科学问题最成熟的方面可能是模型输出的后处理。本文提供了一些使用 AI 对天气和气候模型进行后处理的科学历史和现状。本文源自于 2019 年牛津机器学习气象和气候研讨会上的讨论,还提出了推进此类 AI 使用的中期目标的想法,其中包括确保算法是值得信赖和可解释的,坚持 FAIR 数据实践以提高可用性,以及开发利用我们对大气物理知识的技术。作者提出了几项可操作的事项,并已开始实施其中一项:一个用于存储可通过 AI 解决的各种实际天气和气候问题数据集的存储库。本文呈现了五个这样的数据集,并永久存档,同时还提供了用于处理它们并将结果与基线技术进行比较的 Jupyter 笔记本。作者邀请读者在与基线比较的情况下测试他们自己的算法,并将结果存档。本文是“天气和气候建模的机器学习”主题专刊的一部分。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验