Suppr超能文献

MicroRNA 通过直接与离子通道结合来调节心肌动作电位的生物物理特性。

MicroRNA Biophysically Modulates Cardiac Action Potential by Direct Binding to Ion Channel.

机构信息

Departments of Physiology and Cell Biology (D.Y., X.W., P.J.M., I.D., J.-D.F.), The Dorothy M. Davis Heart and Lung Research Institute, Frick Center for Heart Failure and Arrhythmia, The Ohio State University, Columbus.

Department of Medicine, Heart and Vascular Research Center, The MetroHealth System, Case Western Reserve University, Cleveland, OH (A.T.D., E.B., K.R.L., J.-D.F.).

出版信息

Circulation. 2021 Apr 20;143(16):1597-1613. doi: 10.1161/CIRCULATIONAHA.120.050098. Epub 2021 Feb 16.

Abstract

BACKGROUND

MicroRNAs (miRs) play critical roles in regulation of numerous biological events, including cardiac electrophysiology and arrhythmia, through a canonical RNA interference mechanism. It remains unknown whether endogenous miRs modulate physiologic homeostasis of the heart through noncanonical mechanisms.

METHODS

We focused on the predominant miR of the heart (miR1) and investigated whether miR1 could physically bind with ion channels in cardiomyocytes by electrophoretic mobility shift assay, in situ proximity ligation assay, RNA pull down, and RNA immunoprecipitation assays. The functional modulations of cellular electrophysiology were evaluated by inside-out and whole-cell patch clamp. Mutagenesis of miR1 and the ion channel was used to understand the underlying mechanism. The effect on the heart ex vivo was demonstrated through investigating arrhythmia-associated human single nucleotide polymorphisms with miR1-deficient mice.

RESULTS

We found that endogenous miR1 could physically bind with cardiac membrane proteins, including an inward-rectifier potassium channel Kir2.1. The miR1-Kir2.1 physical interaction was observed in mouse, guinea pig, canine, and human cardiomyocytes. miR1 quickly and significantly suppressed I at sub-pmol/L concentration, which is close to endogenous miR expression level. Acute presence of miR1 depolarized resting membrane potential and prolonged final repolarization of the action potential in cardiomyocytes. We identified 3 miR1-binding residues on the C-terminus of Kir2.1. Mechanistically, miR1 binds to the pore-facing G-loop of Kir2.1 through the core sequence AAGAAG, which is outside its RNA interference seed region. This biophysical modulation is involved in the dysregulation of gain-of-function Kir2.1-M301K mutation in short QT or atrial fibrillation. We found that an arrhythmia-associated human single nucleotide polymorphism of miR1 (hSNP14A/G) specifically disrupts the biophysical modulation while retaining the RNA interference function. It is remarkable that miR1 but not hSNP14A/G relieved the hyperpolarized resting membrane potential in miR1-deficient cardiomyocytes, improved the conduction velocity, and eliminated the high inducibility of arrhythmia in miR1-deficient hearts ex vivo.

CONCLUSIONS

Our study reveals a novel evolutionarily conserved biophysical action of endogenous miRs in modulating cardiac electrophysiology. Our discovery of miRs' biophysical modulation provides a more comprehensive understanding of ion channel dysregulation and may provide new insights into the pathogenesis of cardiac arrhythmias.

摘要

背景

microRNAs(miRs)通过经典的 RNA 干扰机制在调节许多生物事件中发挥关键作用,包括心脏电生理学和心律失常。目前尚不清楚内源性 miRs 是否通过非经典机制调节心脏的生理稳态。

方法

我们专注于心脏中的主要 miR(miR1),并通过电泳迁移率变动分析、原位邻近连接分析、RNA 下拉和 RNA 免疫沉淀测定来研究 miR1 是否可以与心肌细胞中的离子通道发生物理结合。通过内向外和全细胞膜片钳来评估细胞电生理学的功能调节。通过突变 miR1 和离子通道来理解潜在的机制。通过 miR1 缺陷型小鼠研究与心律失常相关的人类单核苷酸多态性,证明了对心脏的体外作用。

结果

我们发现内源性 miR1 可以与心脏膜蛋白,包括内向整流钾通道 Kir2.1 发生物理结合。在小鼠、豚鼠、犬和人源心肌细胞中均观察到 miR1-Kir2.1 物理相互作用。miR1 以亚皮摩尔浓度快速且显著地抑制 I,该浓度接近内源性 miR 的表达水平。miR1 急性存在可使心肌细胞的静息膜电位去极化,并延长动作电位的终末复极化。我们在 Kir2.1 的 C 末端识别出 3 个 miR1 结合残基。在机制上,miR1 通过核心序列 AAGAAG 与 Kir2.1 的孔面向 G 环结合,该序列位于其 RNA 干扰种子区域之外。这种生物物理调节参与了短 QT 或心房颤动中功能获得性 Kir2.1-M301K 突变的失调。我们发现 miR1 的一个与心律失常相关的人类单核苷酸多态性(hSNP14A/G)特异性地破坏了生物物理调节,同时保留了 RNA 干扰功能。值得注意的是,miR1 而不是 hSNP14A/G 可以减轻 miR1 缺陷型心肌细胞的超极化静息膜电位,改善传导速度,并消除 miR1 缺陷型心脏的体外高诱导性心律失常。

结论

本研究揭示了内源性 miRs 在调节心脏电生理学方面的一种新的进化保守的生物物理作用。我们对 miR 生物物理调节的发现提供了对离子通道失调的更全面理解,并可能为心律失常的发病机制提供新的见解。

相似文献

1
MicroRNA Biophysically Modulates Cardiac Action Potential by Direct Binding to Ion Channel.
Circulation. 2021 Apr 20;143(16):1597-1613. doi: 10.1161/CIRCULATIONAHA.120.050098. Epub 2021 Feb 16.
2
MicroRNA-1 Deficiency Is a Primary Etiological Factor Disrupting Cardiac Contractility and Electrophysiological Homeostasis.
Circ Arrhythm Electrophysiol. 2024 Jan;17(1):e012150. doi: 10.1161/CIRCEP.123.012150. Epub 2023 Dec 21.
3
Multilayer control of cardiac electrophysiology by microRNAs.
J Mol Cell Cardiol. 2022 May;166:107-115. doi: 10.1016/j.yjmcc.2022.02.007. Epub 2022 Mar 3.
4
Comparison of ion channel distribution and expression in cardiomyocytes of canine pulmonary veins versus left atrium.
Cardiovasc Res. 2005 Jan 1;65(1):104-16. doi: 10.1016/j.cardiores.2004.08.014.
8
Sophoridine manifests as a leading compound for anti-arrhythmia with multiple ion-channel blocking effects.
Phytomedicine. 2023 Apr;112:154688. doi: 10.1016/j.phymed.2023.154688. Epub 2023 Jan 31.
9
Kir2.1 and K2P1 channels reconstitute two levels of resting membrane potential in cardiomyocytes.
J Physiol. 2017 Aug 1;595(15):5129-5142. doi: 10.1113/JP274268. Epub 2017 Jul 4.
10
Efficient and specific cardiac IK₁ inhibition by a new pentamidine analogue.
Cardiovasc Res. 2013 Jul 1;99(1):203-14. doi: 10.1093/cvr/cvt103. Epub 2013 Apr 25.

引用本文的文献

1
Activation of toll‑like receptors by non‑coding RNAs and their fragments (Review).
Mol Med Rep. 2025 Oct;32(4). doi: 10.3892/mmr.2025.13650. Epub 2025 Aug 14.
3
Circadian influences on sudden cardiac death and cardiac electrophysiology.
J Mol Cell Cardiol. 2025 Mar;200:93-112. doi: 10.1016/j.yjmcc.2025.01.006. Epub 2025 Jan 27.
4
Functions and applications of RNA interference and small regulatory RNAs.
Acta Biochim Biophys Sin (Shanghai). 2024 Nov 18;57(1):119-130. doi: 10.3724/abbs.2024196.
5
MicroRNAs in diabetic macroangiopathy.
Cardiovasc Diabetol. 2024 Sep 16;23(1):344. doi: 10.1186/s12933-024-02405-w.
6
Kir2.1 dysfunction at the sarcolemma and the sarcoplasmic reticulum causes arrhythmias in a mouse model of Andersen-Tawil syndrome type 1.
Nat Cardiovasc Res. 2022 Oct;1(10):900-917. doi: 10.1038/s44161-022-00145-2. Epub 2022 Oct 17.
8
Exercise Training-Induced MicroRNA Alterations with Protective Effects in Cardiovascular Diseases.
Rev Cardiovasc Med. 2023 Sep 6;24(9):251. doi: 10.31083/j.rcm2409251. eCollection 2023 Sep.
9
The interplay of hydrogen sulfide and microRNAs in cardiovascular diseases: insights and future perspectives.
Mamm Genome. 2024 Sep;35(3):309-323. doi: 10.1007/s00335-024-10043-6. Epub 2024 Jun 4.
10
The beneficial health effects of puerarin in the treatment of cardiovascular diseases: from mechanisms to therapeutics.
Naunyn Schmiedebergs Arch Pharmacol. 2024 Oct;397(10):7273-7296. doi: 10.1007/s00210-024-03142-3. Epub 2024 May 6.

本文引用的文献

2
Heart Disease and Stroke Statistics-2019 Update: A Report From the American Heart Association.
Circulation. 2019 Mar 5;139(10):e56-e528. doi: 10.1161/CIR.0000000000000659.
3
SnapShot: Unconventional miRNA Functions.
Cell. 2018 Aug 9;174(4):1038-1038.e1. doi: 10.1016/j.cell.2018.07.040.
4
5
miRNA-711 Binds and Activates TRPA1 Extracellularly to Evoke Acute and Chronic Pruritus.
Neuron. 2018 Aug 8;99(3):449-463.e6. doi: 10.1016/j.neuron.2018.06.039. Epub 2018 Jul 19.
6
Clustering Pattern and Functional Effect of SNPs in Human miRNA Seed Regions.
Int J Genomics. 2018 Mar 6;2018:2456076. doi: 10.1155/2018/2456076. eCollection 2018.
7
Ion Channel Trafficking: Control of Ion Channel Density as a Target for Arrhythmias?
Front Physiol. 2017 Oct 17;8:808. doi: 10.3389/fphys.2017.00808. eCollection 2017.
8
MolProbity: More and better reference data for improved all-atom structure validation.
Protein Sci. 2018 Jan;27(1):293-315. doi: 10.1002/pro.3330. Epub 2017 Nov 27.
9
KChIP2 is a core transcriptional regulator of cardiac excitability.
Elife. 2017 Mar 6;6:e17304. doi: 10.7554/eLife.17304.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验