文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

疫苗制剂的发展:过去、现在和未来。

Development of vaccine formulations: past, present, and future.

机构信息

Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland.

Helsinki Institute of Life Science (HiLIFE), University of Helsinki, FI-00014, Helsinki, Finland.

出版信息

Drug Deliv Transl Res. 2021 Apr;11(2):353-372. doi: 10.1007/s13346-021-00924-7. Epub 2021 Feb 17.


DOI:10.1007/s13346-021-00924-7
PMID:33598818
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7889058/
Abstract

The current situation, heavily influenced by the ongoing pandemic, puts vaccines back into the spotlight. However, the conventional and traditional vaccines present disadvantages, particularly related to immunogenicity, stability, and storage of the final product. Often, such products require the maintenance of a "cold chain," impacting the costs, the availability, and the distribution of vaccines. Here, after a recall of the mode of action of vaccines and the types of vaccines currently available, we analyze the past, present, and future of vaccine formulation. The past focuses on conventional formulations, the present discusses the use of nanoparticles for vaccine delivery and as adjuvants, while the future presents microneedle patches as alternative formulation and administration route. Finally, we compare the advantages and disadvantages of injectable solutions, nanovaccines, and microneedles in terms of efficacy, stability, and patient-friendly design. Different approaches to vaccine formulation development, the conventional vaccine formulations from the past, the current development of lipid nanoparticles as vaccines, and the near future microneedles formulations are discussed in this review.

摘要

当前的形势受到持续大流行的严重影响,使疫苗重新成为焦点。然而,传统疫苗存在缺点,特别是在免疫原性、最终产品的稳定性和储存方面。通常情况下,此类产品需要维持“冷链”,这会影响疫苗的成本、供应和分配。在这里,我们回顾了疫苗的作用模式和目前可用的疫苗类型,分析了疫苗配方的过去、现在和未来。过去侧重于传统配方,现在讨论了纳米颗粒在疫苗传递和佐剂中的应用,而未来则提出了微针贴片作为替代配方和给药途径。最后,我们比较了注射溶液、纳米疫苗和微针在疗效、稳定性和患者友好设计方面的优缺点。本综述讨论了疫苗配方开发的不同方法、过去的传统疫苗配方、目前作为疫苗的脂质纳米颗粒的开发以及不久的将来的微针配方。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8188/7987619/1de381f499ac/13346_2021_924_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8188/7987619/cd638ac657e7/13346_2021_924_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8188/7987619/e5248c8516a3/13346_2021_924_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8188/7987619/00d1f6babe0b/13346_2021_924_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8188/7987619/527aa912d0bd/13346_2021_924_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8188/7987619/a9f13c054e56/13346_2021_924_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8188/7987619/78b054e687c8/13346_2021_924_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8188/7987619/0410bb44051e/13346_2021_924_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8188/7987619/b493cd8872dc/13346_2021_924_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8188/7987619/1de381f499ac/13346_2021_924_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8188/7987619/cd638ac657e7/13346_2021_924_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8188/7987619/e5248c8516a3/13346_2021_924_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8188/7987619/00d1f6babe0b/13346_2021_924_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8188/7987619/527aa912d0bd/13346_2021_924_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8188/7987619/a9f13c054e56/13346_2021_924_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8188/7987619/78b054e687c8/13346_2021_924_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8188/7987619/0410bb44051e/13346_2021_924_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8188/7987619/b493cd8872dc/13346_2021_924_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8188/7987619/1de381f499ac/13346_2021_924_Fig9_HTML.jpg

相似文献

[1]
Development of vaccine formulations: past, present, and future.

Drug Deliv Transl Res. 2021-4

[2]
Microneedles for vaccine delivery: challenges and future perspectives.

Ther Deliv. 2017-6

[3]
Microneedle Patches as Drug and Vaccine Delivery Platform.

Curr Med Chem. 2017

[4]
Microneedles: A New Generation Vaccine Delivery System.

Micromachines (Basel). 2021-4-14

[5]
Dissolving Microneedle Patches for Dermal Vaccination.

Pharm Res. 2017-7-17

[6]
Biocompatible Mater Constructed Microneedle Arrays as a Novel Vaccine Adjuvant- Delivery System for Cutaneous and Mucosal Vaccination.

Curr Pharm Des. 2015

[7]
Progress in microneedle array patch (MAP) for vaccine delivery.

Hum Vaccin Immunother. 2021-1-2

[8]
Microneedle-Mediated Vaccination: Innovation and Translation.

Adv Drug Deliv Rev. 2021-12

[9]
Microneedle-Mediated Vaccine Delivery to the Oral Mucosa.

Adv Healthc Mater. 2018-12-10

[10]
Microneedle-based vaccines.

Curr Top Microbiol Immunol. 2009

引用本文的文献

[1]
Design a multi-epitope vaccine candidate against Acinetobacter baumannii using advanced computational methods.

AMB Express. 2025-7-12

[2]
Novel adjuvant delivery system constructed by alum-emulsion hybrid nanoparticles with TLR9 agonists boosts vaccine immunity.

J Nanobiotechnology. 2025-7-1

[3]
Revolution of AAV in Drug Discovery: From Delivery System to Clinical Application.

J Med Virol. 2025-6

[4]
Emerging Applications of Pickering Emulsions in Pharmaceutical Formulations: A Comprehensive Review.

Int J Nanomedicine. 2025-5-7

[5]
Immunogenicity and Protective Efficacy of an mRNA Vaccine Targeting HSV-2 UL41 in Mice.

Vaccines (Basel). 2025-3-5

[6]
Navigating Fish Immunity: Focus on Mucosal Immunity and the Evolving Landscape of Mucosal Vaccines.

Biology (Basel). 2024-11-27

[7]
Multi-epitope vaccines: a promising strategy against viral diseases in swine.

Front Cell Infect Microbiol. 2024-12-20

[8]
Prophylactic and therapeutic vaccine development: advancements and challenges.

Mol Biomed. 2024-11-11

[9]
In vivo spatiotemporal characterizing diverse body transportation of optical labeled high immunity aluminium adjuvants with photoacoustic tomography.

Photoacoustics. 2024-9-7

[10]
Unlocking the potential of nanomedicine: advances in precision targeting strategies.

Drug Deliv Transl Res. 2024-10

本文引用的文献

[1]
Conjugated sulfonamides as a class of organic lithium-ion positive electrodes.

Nat Mater. 2021-5

[2]
Integrating Biomaterials and Immunology to Improve Vaccines Against Infectious Diseases.

ACS Biomater Sci Eng. 2020-2-10

[3]
The COVID-19 Vaccine Race: Challenges and Opportunities in Vaccine Formulation.

AAPS PharmSciTech. 2020-8-5

[4]
Pandemic Preparedness: Developing Vaccines and Therapeutic Antibodies For COVID-19.

Cell. 2020-5-27

[5]
SARS, MERS and SARS-CoV-2 (COVID-19) treatment: a patent review.

Expert Opin Ther Pat. 2020-6-7

[6]
Copresentation of Tumor Antigens and Costimulatory Molecules via Biomimetic Nanoparticles for Effective Cancer Immunotherapy.

Nano Lett. 2020-6-10

[7]
Developing Vaccines for SARS-CoV-2 and Future Epidemics and Pandemics: Applying Lessons from Past Outbreaks.

Health Secur. 2020-4-29

[8]
Improved Cutaneous Genetic Immunization by Microneedle Array Delivery of an Adjuvanted Adenovirus Vaccine.

J Invest Dermatol. 2020-12

[9]
Microneedle array delivered recombinant coronavirus vaccines: Immunogenicity and rapid translational development.

EBioMedicine. 2020-4-2

[10]
Vaccine designers take first shots at COVID-19.

Science. 2020-4-3

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索