Suppr超能文献

Editorial: CAZymes in Biorefinery: From Genes to Application.

作者信息

Contesini Fabiano Jares, Frandsen Rasmus John Normand, Damasio André

机构信息

Synthetic Biology Section, Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark.

Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil.

出版信息

Front Bioeng Biotechnol. 2021 Feb 10;9:622817. doi: 10.3389/fbioe.2021.622817. eCollection 2021.

Abstract
摘要

相似文献

1
Editorial: CAZymes in Biorefinery: From Genes to Application.
Front Bioeng Biotechnol. 2021 Feb 10;9:622817. doi: 10.3389/fbioe.2021.622817. eCollection 2021.
2
Diversity of microbial carbohydrate-active enzymes in Danish anaerobic digesters fed with wastewater treatment sludge.
Biotechnol Biofuels. 2017 Jun 21;10:158. doi: 10.1186/s13068-017-0840-y. eCollection 2017.
5
Designing cellulolytic enzyme systems for biorefinery: From nature to application.
J Biosci Bioeng. 2019 Dec;128(6):637-654. doi: 10.1016/j.jbiosc.2019.05.007. Epub 2019 Jun 13.
6
Contrasted evolutionary constraints on carbohydrate active enzymes (CAZymes) in selected Frankia strains.
Antonie Van Leeuwenhoek. 2019 Jan;112(1):115-125. doi: 10.1007/s10482-018-1173-y. Epub 2018 Oct 5.
7
Purification and characterization of a feruloyl esterase from the fungus Penicillium expansum.
J Appl Microbiol. 1997 Dec;83(6):718-26. doi: 10.1046/j.1365-2672.1997.00307.x.
8
Proteomic Detection of Carbohydrate-Active Enzymes (CAZymes) in Microbial Secretomes.
Methods Mol Biol. 2019;1871:159-177. doi: 10.1007/978-1-4939-8814-3_12.
10
Genome-Wide Comparison of Carbohydrate-Active Enzymes (CAZymes) Repertoire of .
Mycobiology. 2018 Nov 16;46(4):349-360. doi: 10.1080/12298093.2018.1537585. eCollection 2018.

引用本文的文献

3
Strategies Shaping the Transcription of Carbohydrate-Active Enzyme Genes in .
J Fungi (Basel). 2022 Jan 14;8(1):79. doi: 10.3390/jof8010079.
4
Fungal Laccases: The Forefront of Enzymes for Sustainability.
J Fungi (Basel). 2021 Dec 7;7(12):1048. doi: 10.3390/jof7121048.

本文引用的文献

1
Characterization of alkylguaiacol-degrading cytochromes P450 for the biocatalytic valorization of lignin.
Proc Natl Acad Sci U S A. 2020 Oct 13;117(41):25771-25778. doi: 10.1073/pnas.1916349117. Epub 2020 Sep 28.
2
Innovations in CAZyme gene diversity and its modification for biorefinery applications.
Biotechnol Rep (Amst). 2020 Sep 1;28:e00525. doi: 10.1016/j.btre.2020.e00525. eCollection 2020 Dec.
3
Insights into the cellulose degradation mechanism of the thermophilic fungus based on integrated functional omics.
Biotechnol Biofuels. 2020 Aug 12;13:143. doi: 10.1186/s13068-020-01783-z. eCollection 2020.
5
Sustainability metrics of pretreatment processes in a waste derived lignocellulosic biomass biorefinery.
Bioresour Technol. 2020 Feb;298:122558. doi: 10.1016/j.biortech.2019.122558. Epub 2019 Dec 10.
6
Feruloyl esterases: Biocatalysts to overcome biomass recalcitrance and for the production of bioactive compounds.
Bioresour Technol. 2019 Apr;278:408-423. doi: 10.1016/j.biortech.2019.01.064. Epub 2019 Jan 17.
7
One-Pot Bioconversion of l-Arabinose to l-Ribulose in an Enzymatic Cascade.
Angew Chem Int Ed Engl. 2019 Feb 18;58(8):2428-2432. doi: 10.1002/anie.201814219. Epub 2019 Jan 29.
8
High value added lipids produced by microorganisms: a potential use of sugarcane vinasse.
Crit Rev Biotechnol. 2017 Dec;37(8):1048-1061. doi: 10.1080/07388551.2017.1304356. Epub 2017 Apr 20.
9
Techno-economic analysis and climate change impacts of sugarcane biorefineries considering different time horizons.
Biotechnol Biofuels. 2017 Mar 14;10:50. doi: 10.1186/s13068-017-0722-3. eCollection 2017.
10
The use of thermostable bacterial hemicellulases improves the conversion of lignocellulosic biomass to valuable molecules.
Appl Microbiol Biotechnol. 2016 Sep;100(17):7577-90. doi: 10.1007/s00253-016-7562-0. Epub 2016 May 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验