W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164, United States.
W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164, United States.
Acta Biomater. 2021 May;126:63-91. doi: 10.1016/j.actbio.2021.02.034. Epub 2021 Feb 28.
With an increasing life expectancy and aging population, orthopedic defects and bone graft surgeries are increasing in global prevalence. Research to date has advanced the understanding of bone biology and defect repair mechanism, leading to a marked success in the development of synthetic bone substitutes. Yet, the quest for functionalized bone grafts prompted the researchers to find a viable alternative that regulates cellular activity and supports bone regeneration and healing process without causing serious side-effects. Recently, researchers have introduced natural medicinal compounds (NMCs) in bone scaffold that enables them to release at a desirable rate, maintains a sustained release allowing sufficient time for tissue in-growth, and guides bone regeneration process with minimized risk of tissue toxicity. According to World Health Organization (WHO), NMCs are gaining popularity in western countries for the last two decades and are being used by 80% of the population worldwide. Compared to synthetic drugs, NMCs have a broader range of safety window and thus suitable for prolonged localized delivery for bone regeneration. There is limited literature focusing on the integration of bone grafts and natural medicines that provides detailed scientific evidences on NMCs, their toxic limits and particular application in bone tissue engineering, which could guide the researchers to develop functionalized implants for various bone disorders. This review will discuss the emerging trend of NMC delivery from bone grafts, including 3D-printed structures and surface-modified implants, highlighting the significance and potential of NMCs for bone health, guiding future paths toward the development of an ideal bone tissue engineering scaffold. STATEMENT OF SIGNIFICANCE: To date, additive manufacturing technology provids us with many advanced patient specific or defect specific bone constructs exhibiting three-dimensional, well-defined microstructure with interconnected porous networks for defect-repair applications. However, an ideal scaffold should also be able to supply biological signals that actively guide tissue regeneration while simultaneously preventing post-implantation complications. Natural biomolecules are gaining popularity in tissue engineering since they possess a safer, effective approach compared to synthetic drugs. The integration of bone scaffolds and natural biomolecules exploits the advantages of customized, multi-functional bone implants to provide localized delivery of biochemical signals in a controlled manner. This review presents an overview of bone scaffolds as delivery systems for natural biomolecules, which may provide prominent advancement in bone development and improve defect-healing caused by various musculoskeletal disorders.
随着预期寿命的延长和人口老龄化,全球范围内骨科缺陷和骨移植手术的发病率正在上升。迄今为止的研究进展提高了人们对骨生物学和缺陷修复机制的认识,导致合成骨替代品的开发取得了显著成功。然而,为了寻找功能化的骨移植物,研究人员一直在寻找一种可行的替代物,这种替代物可以调节细胞活性,支持骨再生和愈合过程,而不会引起严重的副作用。最近,研究人员在骨支架中引入了天然药用化合物 (NMCs),使它们能够以理想的速度释放,持续释放以维持足够的组织内生长时间,并以最小的组织毒性风险引导骨再生过程。根据世界卫生组织 (WHO) 的数据,在过去的二十年中,NMC 在西方国家越来越受欢迎,全世界有 80%的人在使用它们。与合成药物相比,NMC 的安全范围更广,因此适合用于骨再生的长期局部递送。目前关于骨移植物和天然药物结合的文献有限,这些文献提供了关于 NMC 的详细科学证据、它们的毒性极限以及在骨组织工程中的特定应用,这可以指导研究人员开发用于各种骨疾病的功能化植入物。本文综述了从骨移植物中递送 NMC 的新兴趋势,包括 3D 打印结构和表面改性植入物,强调了 NMC 对骨骼健康的重要性和潜力,为开发理想的骨组织工程支架指明了未来的方向。意义陈述:迄今为止,增材制造技术为我们提供了许多先进的患者特异性或缺陷特异性骨构建体,这些构建体具有三维、定义明确的微观结构和相互连接的多孔网络,可用于缺陷修复应用。然而,理想的支架还应该能够提供主动引导组织再生的生物信号,同时防止植入后的并发症。与合成药物相比,天然生物分子在组织工程中越来越受欢迎,因为它们具有更安全、更有效的方法。骨支架与天然生物分子的结合利用了定制化、多功能骨植入物的优势,以可控的方式提供生物化学信号的局部递送。本文综述了作为天然生物分子递送系统的骨支架,这可能为骨骼发育提供显著的进展,并改善各种肌肉骨骼疾病引起的缺陷愈合。