Suppr超能文献

三维多切片电影心肌速度映射的快速自动分割

Fast and Automated Segmentation for the Three-Directional Multi-Slice Cine Myocardial Velocity Mapping.

作者信息

Wu Yinzhe, Hatipoglu Suzan, Alonso-Álvarez Diego, Gatehouse Peter, Li Binghuan, Gao Yikai, Firmin David, Keegan Jennifer, Yang Guang

机构信息

National Heart & Lung Institute, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK.

Department of Bioengineering, Faculty of Engineering, Imperial College London, London SW7 2AZ, UK.

出版信息

Diagnostics (Basel). 2021 Feb 19;11(2):346. doi: 10.3390/diagnostics11020346.

Abstract

Three-directional cine multi-slice left ventricular myocardial velocity mapping (3Dir MVM) is a cardiac magnetic resonance (CMR) technique that allows the assessment of cardiac motion in three orthogonal directions. Accurate and reproducible delineation of the myocardium is crucial for accurate analysis of peak systolic and diastolic myocardial velocities. In addition to the conventionally available magnitude CMR data, 3Dir MVM also provides three orthogonal phase velocity mapping datasets, which are used to generate velocity maps. These velocity maps may also be used to facilitate and improve the myocardial delineation. Based on the success of deep learning in medical image processing, we propose a novel fast and automated framework that improves the standard U-Net-based methods on these CMR multi-channel data (magnitude and phase velocity mapping) by cross-channel fusion with an attention module and the shape information-based post-processing to achieve accurate delineation of both epicardial and endocardial contours. To evaluate the results, we employ the widely used Dice Scores and the quantification of myocardial longitudinal peak velocities. Our proposed network trained with multi-channel data shows superior performance compared to standard U-Net-based networks trained on single-channel data. The obtained results are promising and provide compelling evidence for the design and application of our multi-channel image analysis of the 3Dir MVM CMR data.

摘要

三维电影多层左心室心肌速度映射(3Dir MVM)是一种心脏磁共振(CMR)技术,可在三个正交方向上评估心脏运动。准确且可重复地描绘心肌对于准确分析收缩期和舒张期心肌峰值速度至关重要。除了传统的幅度CMR数据外,3Dir MVM还提供三个正交的相速度映射数据集,用于生成速度图。这些速度图也可用于促进和改善心肌描绘。基于深度学习在医学图像处理中的成功,我们提出了一种新颖的快速自动化框架,该框架通过与注意力模块进行跨通道融合以及基于形状信息的后处理,改进了基于标准U-Net的方法,用于处理这些CMR多通道数据(幅度和相速度映射),以实现心外膜和心内膜轮廓的准确描绘。为了评估结果,我们采用了广泛使用的Dice分数和心肌纵向峰值速度的量化。与基于单通道数据训练的标准U-Net网络相比,我们提出的用多通道数据训练的网络表现出卓越的性能。获得的结果很有前景,为我们对3Dir MVM CMR数据进行多通道图像分析的设计和应用提供了令人信服的证据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef84/7922945/60969cb8fdcb/diagnostics-11-00346-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验