IEEE J Biomed Health Inform. 2023 Oct;27(10):5134-5142. doi: 10.1109/JBHI.2022.3158897. Epub 2023 Oct 5.
Synthetic digital twins based on medical data accelerate the acquisition, labelling and decision making procedure in digital healthcare. A core part of digital healthcare twins is model-based data synthesis, which permits the generation of realistic medical signals without requiring to cope with the modelling complexity of anatomical and biochemical phenomena producing them in reality. Unfortunately, algorithms for cardiac data synthesis have been so far scarcely studied in the literature. An important imaging modality in the cardiac examination is three-directional CINE multi-slice myocardial velocity mapping (3Dir MVM), which provides a quantitative assessment of cardiac motion in three orthogonal directions of the left ventricle. The long acquisition time and complex acquisition produce make it more urgent to produce synthetic digital twins of this imaging modality. In this study, we propose a hybrid deep learning (HDL) network, especially for synthetic 3Dir MVM data. Our algorithm is featured by a hybrid UNet and a Generative Adversarial Network with a foreground-background generation scheme. The experimental results show that from temporally down-sampled magnitude CINE images (six times), our proposed algorithm can still successfully synthesise high temporal resolution 3Dir MVM CMR data (PSNR=42.32) with precise left ventricle segmentation (DICE=0.92). These performance scores indicate that our proposed HDL algorithm can be implemented in real-world digital twins for myocardial velocity mapping data simulation. To the best of our knowledge, this work is the first one investigating digital twins of the 3Dir MVM CMR, which has shown great potential for improving the efficiency of clinical studies via synthesised cardiac data.
基于医疗数据的合成数字双胞胎加速了数字医疗保健中的数据获取、标注和决策过程。数字医疗双胞胎的核心部分是基于模型的数据合成,它允许生成逼真的医疗信号,而无需处理产生这些信号的解剖学和生物化学现象的建模复杂性。不幸的是,迄今为止,文献中对心脏数据合成算法的研究甚少。心脏检查中的一种重要成像方式是三维电影多层面心肌速度图(3Dir MVM),它提供了左心室三个正交方向上心脏运动的定量评估。由于采集时间长且采集过程复杂,因此更迫切需要生成这种成像方式的合成数字双胞胎。在这项研究中,我们提出了一种混合深度学习(HDL)网络,特别是用于合成 3Dir MVM 数据。我们的算法的特点是混合 UNet 和具有前景-背景生成方案的生成对抗网络。实验结果表明,从时间下采样的幅度电影图像(六倍)中,我们提出的算法仍然可以成功地合成具有精确左心室分割(DICE=0.92)的高时间分辨率 3Dir MVM CMR 数据(PSNR=42.32)。这些性能得分表明,我们提出的 HDL 算法可以在实际的数字双胞胎中用于心肌速度映射数据模拟。据我们所知,这项工作是第一个研究 3Dir MVM CMR 的数字双胞胎的工作,它在通过合成心脏数据提高临床研究效率方面显示出了巨大的潜力。