Suppr超能文献

一项多中心、多供应商研究,旨在评估用于前列腺癌分级(高级别与低级别)的影像组学模型的可推广性。

A Multi-Center, Multi-Vendor Study to Evaluate the Generalizability of a Radiomics Model for Classifying Prostate cancer: High Grade vs. Low Grade.

作者信息

Castillo T Jose M, Starmans Martijn P A, Arif Muhammad, Niessen Wiro J, Klein Stefan, Bangma Chris H, Schoots Ivo G, Veenland Jifke F

机构信息

Department of Radiology and Nuclear Medicine, Erasmus MC, 3015 GD Rotterdam, The Netherlands.

Faculty of Applied Sciences, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands.

出版信息

Diagnostics (Basel). 2021 Feb 22;11(2):369. doi: 10.3390/diagnostics11020369.

Abstract

Radiomics applied in MRI has shown promising results in classifying prostate cancer lesions. However, many papers describe single-center studies without external validation. The issues of using radiomics models on unseen data have not yet been sufficiently addressed. The aim of this study is to evaluate the generalizability of radiomics models for prostate cancer classification and to compare the performance of these models to the performance of radiologists. Multiparametric MRI, photographs and histology of radical prostatectomy specimens, and pathology reports of 107 patients were obtained from three healthcare centers in the Netherlands. By spatially correlating the MRI with histology, 204 lesions were identified. For each lesion, radiomics features were extracted from the MRI data. Radiomics models for discriminating high-grade (Gleason score ≥ 7) versus low-grade lesions were automatically generated using open-source machine learning software. The performance was tested both in a single-center setting through cross-validation and in a multi-center setting using the two unseen datasets as external validation. For comparison with clinical practice, a multi-center classifier was tested and compared with the Prostate Imaging Reporting and Data System version 2 (PIRADS v2) scoring performed by two expert radiologists. The three single-center models obtained a mean AUC of 0.75, which decreased to 0.54 when the model was applied to the external data, the radiologists obtained a mean AUC of 0.46. In the multi-center setting, the radiomics model obtained a mean AUC of 0.75 while the radiologists obtained a mean AUC of 0.47 on the same subset. While radiomics models have a decent performance when tested on data from the same center(s), they may show a significant drop in performance when applied to external data. On a multi-center dataset our radiomics model outperformed the radiologists, and thus, may represent a more accurate alternative for malignancy prediction.

摘要

放射组学应用于磁共振成像(MRI)在前列腺癌病变分类方面已显示出有前景的结果。然而,许多论文描述的是单中心研究,缺乏外部验证。在未见数据上使用放射组学模型的问题尚未得到充分解决。本研究的目的是评估放射组学模型对前列腺癌分类的可推广性,并将这些模型的性能与放射科医生的性能进行比较。从荷兰的三个医疗中心获取了107例患者的多参数MRI、前列腺根治性切除标本的照片和组织学以及病理报告。通过将MRI与组织学进行空间关联,确定了204个病变。对于每个病变,从MRI数据中提取放射组学特征。使用开源机器学习软件自动生成用于区分高级别(Gleason评分≥7)与低级别病变的放射组学模型。通过交叉验证在单中心设置中以及使用两个未见数据集作为外部验证在多中心设置中对性能进行了测试。为了与临床实践进行比较,测试了一个多中心分类器,并与两位专家放射科医生进行的前列腺影像报告和数据系统第2版(PIRADS v2)评分进行了比较。三个单中心模型的平均曲线下面积(AUC)为0.75,当该模型应用于外部数据时降至0.54,放射科医生的平均AUC为0.46。在多中心设置中,放射组学模型的平均AUC为0.75,而放射科医生在同一子集上的平均AUC为0.47。虽然放射组学模型在来自同一中心的数据上进行测试时具有不错的性能,但当应用于外部数据时,它们的性能可能会显著下降。在一个多中心数据集中,我们的放射组学模型优于放射科医生,因此,可能代表了一种更准确的恶性肿瘤预测替代方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d82/7926758/0ab2d1237fbf/diagnostics-11-00369-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验