Suppr超能文献

基于混合对比增强超声图像(CEUS)的放射组学特征用于评估乳腺癌组织学特征的初步研究

Radiomic Signatures Derived from Hybrid Contrast-Enhanced Ultrasound Images (CEUS) for the Assessment of Histological Characteristics of Breast Cancer: A Pilot Study.

作者信息

Bene Ioana, Ciurea Anca Ileana, Ciortea Cristiana Augusta, Ștefan Paul Andrei, Ciule Larisa Dorina, Lupean Roxana Adelina, Dudea Sorin Marian

机构信息

Department of Radiology, "Iuliu Hatieganu" University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania.

Department of Radiology, Emergency County Hospital, 400006 Cluj-Napoca, Romania.

出版信息

Cancers (Basel). 2022 Aug 12;14(16):3905. doi: 10.3390/cancers14163905.

Abstract

UNLABELLED

The purpose of this study was to evaluate the diagnostic performance of radiomic features extracted from standardized hybrid contrast-enhanced ultrasound (CEUS) data for the assessment of hormone receptor status, human epidermal growth factor receptor 2 (HER2) status, tumor grade and Ki-67 in patients with primary breast cancer.

METHODS

This prospective study included 72 patients with biopsy-proven breast cancer who underwent CEUS examinations between October 2020 and September 2021.

RESULTS

A radiomic analysis found the WavEnHH_s_4 parameter as an independent predictor associated with the HER2+ status with 76.92% sensitivity, and 64.41% specificity and a prediction model that could differentiate between the HER2 entities with 76.92% sensitivity and 84.75% specificity. The RWavEnLH_s-4 parameter was an independent predictor for estrogen receptor (ER) status with 55.93% sensitivity and 84.62% specificity, while a prediction model (RPerc01, RPerc10 and RWavEnLH_s_4) could differentiate between the progesterone receptor (PR) status with 44.74% sensitivity and 88.24% specificity. No texture parameter showed statistically significant results at the univariate analysis when comparing the Nottingham grade and the Ki-67 status.

CONCLUSION

Our preliminary data indicate a potential that hybrid CEUS radiomic features allow the discrimination between breast cancers of different receptor and HER2 statuses with high specificity. Hybrid CEUS radiomic features might have the potential to provide a noninvasive, easily accessible and contrast-agent-safe method to assess tumor biology before and during treatment.

摘要

未标注

本研究旨在评估从标准化混合对比增强超声(CEUS)数据中提取的放射组学特征对原发性乳腺癌患者激素受体状态、人表皮生长因子受体2(HER2)状态、肿瘤分级和Ki-67的诊断性能。

方法

这项前瞻性研究纳入了72例经活检证实为乳腺癌的患者,这些患者于2020年10月至2021年9月期间接受了CEUS检查。

结果

放射组学分析发现,WavEnHH_s_4参数是与HER2阳性状态相关的独立预测因子,灵敏度为76.92%,特异度为64.41%,且有一个预测模型能够以76.92%的灵敏度和84.75%的特异度区分HER2实体。RWavEnLH_s-4参数是雌激素受体(ER)状态的独立预测因子,灵敏度为55.93%,特异度为84.62%,而一个预测模型(RPerc01、RPerc10和RWavEnLH_s_4)能够以44.74%的灵敏度和88.24%的特异度区分孕激素受体(PR)状态。在比较诺丁汉分级和Ki-67状态时,单因素分析中没有纹理参数显示出具有统计学意义的结果。

结论

我们的初步数据表明,混合CEUS放射组学特征有可能以高特异度区分不同受体和HER2状态的乳腺癌。混合CEUS放射组学特征可能有潜力提供一种无创、易于获取且造影剂安全的方法,用于在治疗前和治疗期间评估肿瘤生物学特性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19dd/9405598/8d0abc62cc26/cancers-14-03905-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验