Suppr超能文献

2 型糖尿病患者的人群细分及其临床应用——范围综述。

Population segmentation of type 2 diabetes mellitus patients and its clinical applications - a scoping review.

机构信息

Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore.

SingHealth Regional Health System PULSES Centre, Singapore Health Services, Outram Rd, Singapore, 169608, Singapore.

出版信息

BMC Med Res Methodol. 2021 Mar 11;21(1):49. doi: 10.1186/s12874-021-01209-w.

Abstract

BACKGROUND

Population segmentation permits the division of a heterogeneous population into relatively homogenous subgroups. This scoping review aims to summarize the clinical applications of data driven and expert driven population segmentation among Type 2 diabetes mellitus (T2DM) patients.

METHODS

The literature search was conducted in Medline®, Embase®, Scopus® and PsycInfo®. Articles which utilized expert-based or data-driven population segmentation methodologies for evaluation of outcomes among T2DM patients were included. Population segmentation variables were grouped into five domains (socio-demographic, diabetes related, non-diabetes medical related, psychiatric / psychological and health system related variables). A framework for PopulAtion Segmentation Study design for T2DM patients (PASS-T2DM) was proposed.

RESULTS

Of 155,124 articles screened, 148 articles were included. Expert driven population segmentation approach was most commonly used, of which judgemental splitting was the main strategy employed (n = 111, 75.0%). Cluster based analyses (n = 37, 25.0%) was the main data driven population segmentation strategies utilized. Socio-demographic (n = 66, 44.6%), diabetes related (n = 54, 36.5%) and non-diabetes medical related (n = 18, 12.2%) were the most used domains. Specifically, patients' race, age, Hba1c related parameters and depression / anxiety related variables were most frequently used. Health grouping/profiling (n = 71, 48%), assessment of diabetes related complications (n = 57, 38.5%) and non-diabetes metabolic derangements (n = 42, 28.4%) were the most frequent population segmentation objectives of the studies.

CONCLUSIONS

Population segmentation has a wide range of clinical applications for evaluating clinical outcomes among T2DM patients. More studies are required to identify the optimal set of population segmentation framework for T2DM patients.

摘要

背景

人群细分允许将异质人群划分为相对同质的亚组。本范围综述旨在总结数据驱动和专家驱动的 2 型糖尿病(T2DM)患者人群细分的临床应用。

方法

文献检索在 Medline ® 、Embase ® 、Scopus ® 和 PsycInfo ® 中进行。纳入了使用基于专家或基于数据的人群细分方法评估 T2DM 患者结局的文章。人群细分变量分为五个领域(社会人口统计学、糖尿病相关、非糖尿病医学相关、精神/心理和卫生系统相关变量)。提出了用于 T2DM 患者的人群细分研究设计框架(PASS-T2DM)。

结果

在筛选出的 155,124 篇文章中,有 148 篇被纳入。最常用的是专家驱动的人群细分方法,其中主要采用的策略是判断分割(n=111,75.0%)。基于聚类的分析(n=37,25.0%)是最常用的数据驱动人群细分策略。社会人口统计学(n=66,44.6%)、糖尿病相关(n=54,36.5%)和非糖尿病医学相关(n=18,12.2%)是使用最多的领域。具体来说,患者的种族、年龄、Hba1c 相关参数和抑郁/焦虑相关变量最常被使用。健康分组/分析(n=71,48%)、评估糖尿病相关并发症(n=57,38.5%)和非糖尿病代谢紊乱(n=42,28.4%)是研究中最常见的人群细分目标。

结论

人群细分在评估 T2DM 患者的临床结局方面有广泛的临床应用。需要更多的研究来确定 T2DM 患者最佳的人群细分框架。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b24/7953703/03be115397c0/12874_2021_1209_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验