Suppr超能文献

红细胞储存期间的溶血途径及供体间红细胞形态的变异性

Hemolysis Pathways during Storage of Erythrocytes and Inter-Donor Variability in Erythrocyte Morphology.

作者信息

Melzak Kathryn A, Spouge John L, Boecker Clemens, Kirschhöfer Frank, Brenner-Weiss Gerald, Bieback Karen

机构信息

Institute of Functional Interfaces, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany.

National Center for Biotechnology Information, National Institutes of Health USA, Bethesda, Maryland, USA.

出版信息

Transfus Med Hemother. 2021 Feb;48(1):39-47. doi: 10.1159/000508711. Epub 2020 Jul 16.

Abstract

BACKGROUND

Red blood cells (RBCs) stored for transfusions can lyse over the course of the storage period. The lysis is traditionally assumed to occur via the formation of spiculated echinocyte forms, so that cells that appear smoother are assumed to have better storage quality. We investigate this hypothesis by comparing the morphological distribution to the hemolysis for samples from different donors.

METHODS

Red cell concentrates were obtained from a regional blood bank quality control laboratory. Out of 636 units processed by the laboratory, we obtained 26 high hemolysis units and 24 low hemolysis units for assessment of RBC morphology. The association between the morphology and the hemolysis was tested with the Wilcoxon-Mann-Whitney U test.

RESULTS

Samples with high stomatocyte counts ( = 0.0012) were associated with increased hemolysis, implying that cells can lyse via the formation of stomatocytes.

CONCLUSION

RBCs can lyse without significant echinocyte formation. Lower degrees of spiculation are not a good indicator of low hemolysis when RBCs from different donors are compared.

摘要

背景

用于输血储存的红细胞(RBCs)在储存过程中可能会发生溶血。传统上认为溶血是通过形成棘状红细胞形态发生的,因此,看起来更光滑的细胞被认为具有更好的储存质量。我们通过比较来自不同供体样本的形态分布与溶血情况来研究这一假设。

方法

从一个地区血库质量控制实验室获取红细胞浓缩物。在该实验室处理的636个单位中,我们获得了26个高溶血单位和24个低溶血单位用于评估红细胞形态。形态与溶血之间的关联用Wilcoxon-Mann-Whitney U检验进行测试。

结果

口形红细胞计数高的样本(=0.0012)与溶血增加有关,这意味着细胞可通过口形红细胞的形成而发生溶血。

结论

红细胞可在无明显棘状红细胞形成的情况下发生溶血。当比较来自不同供体的红细胞时,较低程度的棘状化并不是低溶血的良好指标。

相似文献

1
Hemolysis Pathways during Storage of Erythrocytes and Inter-Donor Variability in Erythrocyte Morphology.
Transfus Med Hemother. 2021 Feb;48(1):39-47. doi: 10.1159/000508711. Epub 2020 Jul 16.
2
Hemolysis of red blood cells during processing and storage.
Transfusion. 2012 Mar;52(3):489-92. doi: 10.1111/j.1537-2995.2011.03298.x. Epub 2011 Aug 9.
3
Inter-donor variability in deformability of red blood cells in blood units.
Transfus Med. 2020 Dec;30(6):492-496. doi: 10.1111/tme.12725. Epub 2020 Oct 4.
4
The heritability of hemolysis in stored human red blood cells.
Transfusion. 2015 Jun;55(6):1178-85. doi: 10.1111/trf.12992. Epub 2015 Feb 2.
7
Effect of cryopreservation on a rare McLeod donor red blood cell concentrate.
Immunohematology. 2021 Jun;37(2):78-83. doi: 10.21307/immunohematology-2021-012.
8
Sickle Cell Trait Increases Red Blood Cell Storage Hemolysis and Post-Transfusion Clearance in Mice.
EBioMedicine. 2016 Sep;11:239-248. doi: 10.1016/j.ebiom.2016.08.006. Epub 2016 Aug 4.
10
Quantifying morphological heterogeneity: a study of more than 1 000 000 individual stored red blood cells.
Vox Sang. 2015 Oct;109(3):221-30. doi: 10.1111/vox.12277. Epub 2015 Apr 20.

引用本文的文献

1
Stain-free artificial intelligence-assisted light microscopy for the identification of blood cells in microfluidic flow.
Front Bioinform. 2025 Aug 14;5:1628724. doi: 10.3389/fbinf.2025.1628724. eCollection 2025.
2
Unbiased Morphometric Assessment of Red Blood Cell Storage Lesion in the Presence of Shear-Induced Stomatocytes.
Transfus Med Hemother. 2024 Aug 22;52(3):190-201. doi: 10.1159/000539882. eCollection 2025 Jun.
5
Molecular modifications to mitigate oxidative stress and improve red blood cell storability.
Front Physiol. 2024 Oct 30;15:1499308. doi: 10.3389/fphys.2024.1499308. eCollection 2024.
7
Big Data in Transfusion Medicine and Artificial Intelligence Analysis for Red Blood Cell Quality Control.
Transfus Med Hemother. 2023 May 25;50(3):163-173. doi: 10.1159/000530458. eCollection 2023 Jun.
8
Noninferior Red Cell Concentrate Quality after Repeated Air Rescue Mission Transport for Prehospital Transfusion.
Transfus Med Hemother. 2022 Feb 15;49(3):172-179. doi: 10.1159/000520650. eCollection 2022 Jun.
9
Deciphering the Relationship Between Free and Vesicular Hemoglobin in Stored Red Blood Cell Units.
Front Physiol. 2022 Feb 8;13:840995. doi: 10.3389/fphys.2022.840995. eCollection 2022.
10
Stability of Erythrocyte-Derived Nanovesicles Assessed by Light Scattering and Electron Microscopy.
Int J Mol Sci. 2021 Nov 25;22(23):12772. doi: 10.3390/ijms222312772.

本文引用的文献

1
3
Flow morphometry to assess the red blood cell storage lesion.
Cytometry A. 2017 Sep;91(9):874-882. doi: 10.1002/cyto.a.23127. Epub 2017 May 4.
4
Red blood cell components: time to revisit the sources of variability.
Blood Transfus. 2017 Mar;15(2):116-125. doi: 10.2450/2017.0326-16.
5
Red Cell Properties after Different Modes of Blood Transportation.
Front Physiol. 2016 Jul 15;7:288. doi: 10.3389/fphys.2016.00288. eCollection 2016.
7
Albumin reverses the echinocytic shape transformation of stored erythrocytes.
Clin Hemorheol Microcirc. 2015;60(4):437-49. doi: 10.3233/CH-141899.
9
The heritability of metabolite concentrations in stored human red blood cells.
Transfusion. 2014 Aug;54(8):2055-63. doi: 10.1111/trf.12605. Epub 2014 Mar 6.
10
Microparticles in stored red blood cells as potential mediators of transfusion complications.
Transfusion. 2011 Apr;51(4):886-93. doi: 10.1111/j.1537-2995.2011.03099.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验