Suppr超能文献

基于多模态磁共振成像的胶质瘤分级分析:整合影像组学与深度特征

Multi-modal magnetic resonance imaging-based grading analysis for gliomas by integrating radiomics and deep features.

作者信息

Ning Zhenyuan, Luo Jiaxiu, Xiao Qing, Cai Longmei, Chen Yuting, Yu Xiaohui, Wang Jian, Zhang Yu

机构信息

School of Biomedical Engineering, Southern Medical University, Guangzhou, China.

Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, China.

出版信息

Ann Transl Med. 2021 Feb;9(4):298. doi: 10.21037/atm-20-4076.

Abstract

BACKGROUND

To investigate the feasibility of integrating global radiomics and local deep features based on multi-modal magnetic resonance imaging (MRI) for developing a noninvasive glioma grading model.

METHODS

In this study, 567 patients [211 patients with glioblastomas (GBMs) and 356 patients with low-grade gliomas (LGGs)] between May 2006 and September 2018, were enrolled and divided into training (n=186), validation (n=47), and testing cohorts (n=334), respectively. All patients underwent postcontrast enhanced T1-weighted and T2 fluid-attenuated inversion recovery MRI scanning. Radiomics and deep features (trained by 8,510 3D patches) were extracted to quantify the global and local information of gliomas, respectively. A kernel fusion-based support vector machine (SVM) classifier was used to integrate these multi-modal features for grading gliomas. The performance of the grading model was assessed using the area under receiver operating curve (AUC), sensitivity, specificity, Delong test, and -test.

RESULTS

The AUC, sensitivity, and specificity of the model based on combination of radiomics and deep features were 0.94 [95% confidence interval (CI): 0.85, 0.99], 86% (95% CI: 64%, 97%), and 92% (95% CI: 75%, 99%), respectively, for the validation cohort; and 0.88 (95% CI: 0.84, 0.91), 88% (95% CI: 80%, 93%), and 81% (95% CI: 76%, 86%), respectively, for the independent testing cohort from a local hospital. The developed model outperformed the models based only on either radiomics or deep features (Delong test, both of P<0.001), and was also comparable to the clinical radiologists.

CONCLUSIONS

This study demonstrated the feasibility of integrating multi-modal MRI radiomics and deep features to develop a promising noninvasive grading model for gliomas.

摘要

背景

探讨基于多模态磁共振成像(MRI)整合全局影像组学和局部深度特征以建立非侵入性胶质瘤分级模型的可行性。

方法

本研究纳入了2006年5月至2018年9月期间的567例患者[211例胶质母细胞瘤(GBM)患者和356例低级别胶质瘤(LGG)患者],并分别分为训练组(n = 186)、验证组(n = 47)和测试组(n = 334)。所有患者均接受了增强T1加权和T2液体衰减反转恢复序列MRI扫描。分别提取影像组学和深度特征(由8510个3D块训练)以量化胶质瘤的全局和局部信息。使用基于核融合的支持向量机(SVM)分类器整合这些多模态特征以对胶质瘤进行分级。使用受试者操作特征曲线下面积(AUC)、敏感性、特异性、德龙检验和卡方检验评估分级模型的性能。

结果

对于验证组,基于影像组学和深度特征组合的模型的AUC、敏感性和特异性分别为0.94[95%置信区间(CI):0.85,0.99]、86%(95%CI:64%,97%)和92%(95%CI:75%,99%);对于来自当地医院的独立测试组,分别为0.88(95%CI:0.84,0.91)、88%(95%CI:80%,93%)和81%(95%CI:76%,86%)。所开发的模型优于仅基于影像组学或深度特征的模型(德龙检验,P均<0.001),并且与临床放射科医生的表现相当。

结论

本研究证明了整合多模态MRI影像组学和深度特征以建立有前景的非侵入性胶质瘤分级模型的可行性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/08a7/7944310/f5b0492624d9/atm-09-04-298-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验