Suppr超能文献

使用多模态变压器网络对局部晚期宫颈癌进行复发风险分层。

Recurrence risk stratification for locally advanced cervical cancer using multi-modality transformer network.

作者信息

Wang Jian, Mao Yixiao, Gao Xinna, Zhang Yu

机构信息

School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong, China.

Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, Guangdong, China.

出版信息

Front Oncol. 2023 Feb 16;13:1100087. doi: 10.3389/fonc.2023.1100087. eCollection 2023.

Abstract

OBJECTIVES

Recurrence risk evaluation is clinically significant for patients with locally advanced cervical cancer (LACC). We investigated the ability of transformer network in recurrence risk stratification of LACC based on computed tomography (CT) and magnetic resonance (MR) images.

METHODS

A total of 104 patients with pathologically diagnosed LACC between July 2017 and December 2021 were enrolled in this study. All patients underwent CT and MR scanning, and their recurrence status was identified by the biopsy. We randomly divided patients into training cohort (48 cases, non-recurrence: recurrence = 37: 11), validation cohort (21 cases, non-recurrence: recurrence = 16: 5), and testing cohort (35 cases, non-recurrence: recurrence = 27: 8), upon which we extracted 1989, 882 and 315 patches for model's development, validation and evaluation, respectively. The transformer network consisted of three modality fusion modules to extract multi-modality and multi-scale information, and a fully-connected module to perform recurrence risk prediction. The model's prediction performance was assessed by six metrics, including the area under the receiver operating characteristic curve (AUC), accuracy, f1-score, sensitivity, specificity and precision. Univariate analysis with F-test and T-test were conducted for statistical analysis.

RESULTS

The proposed transformer network is superior to conventional radiomics methods and other deep learning networks in both training, validation and testing cohorts. Particularly, in testing cohort, the transformer network achieved the highest AUC of 0.819 ± 0.038, while four conventional radiomics methods and two deep learning networks got the AUCs of 0.680 ± 0.050, 0.720 ± 0.068, 0.777 ± 0.048, 0.691 ± 0.103, 0.743 ± 0.022 and 0.733 ± 0.027, respectively.

CONCLUSIONS

The multi-modality transformer network showed promising performance in recurrence risk stratification of LACC and may be used as an effective tool to help clinicians make clinical decisions.

摘要

目的

复发风险评估对局部晚期宫颈癌(LACC)患者具有临床意义。我们研究了基于计算机断层扫描(CT)和磁共振(MR)图像的变压器网络在LACC复发风险分层中的能力。

方法

本研究纳入了2017年7月至2021年12月期间104例经病理诊断为LACC的患者。所有患者均接受CT和MR扫描,并通过活检确定其复发状态。我们将患者随机分为训练队列(48例,未复发:复发 = 37:11)、验证队列(21例,未复发:复发 = 16:5)和测试队列(35例,未复发:复发 = 27:8),并分别从这些队列中提取1989、882和315个图像块用于模型的开发、验证和评估。变压器网络由三个模态融合模块组成,用于提取多模态和多尺度信息,以及一个全连接模块,用于进行复发风险预测。通过六个指标评估模型的预测性能,包括受试者操作特征曲线下面积(AUC)、准确率、F1分数、灵敏度、特异性和精确率。采用F检验和T检验进行单因素分析以进行统计分析。

结果

所提出的变压器网络在训练、验证和测试队列中均优于传统的放射组学方法和其他深度学习网络。特别是在测试队列中,变压器网络获得了最高的AUC,为0.819±0.038,而四种传统放射组学方法和两种深度学习网络的AUC分别为0.680±0.050、0.720±0.068、0.777±0.048、0.691±0.103、0.743±0.022和0.733±0.027。

结论

多模态变压器网络在LACC复发风险分层中表现出良好的性能,可作为帮助临床医生做出临床决策的有效工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b0e2/9978213/2fad8acc12c0/fonc-13-1100087-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验