Hiramoto Kaoru, Ino Kosuke, Komatsu Keika, Nashimoto Yuji, Shiku Hitoshi
Graduate School of Environmental Studies, Tohoku University, Japan.
Graduate School of Engineering, Tohoku University, Japan.
Biosens Bioelectron. 2021 Jun 1;181:113123. doi: 10.1016/j.bios.2021.113123. Epub 2021 Mar 1.
The respiratory activity of cultured cells can be electrochemically monitored using scanning electrochemical microscopy (SECM) with high spatial resolution. However, in SECM, the electrode takes a long time to scan, limiting simultaneous measurements with large biological samples such as cell spheroids. Therefore, for rapid electrochemical imaging, a novel strategy is needed. Herein, we report electrochemiluminescence (ECL) imaging of spheroid respiratory activity for the first time using sequential potential steps. L-012, a luminol analog, was used as an ECL luminophore, and HO, a sensitizer for ECL of L-012, was generated by the electrochemical reduction of dissolved O. The ECL imaging visualized spheroid respiratory activity-evidenced by ECL suppression-corresponding to O distribution around the spheroids. This method enabled the time-lapse imaging of respiratory activity in multiple spheroids with good spatial resolution comparable to that of SECM. Our work provides a promising high-throughput imaging strategy for elucidating spheroid cellular dynamics.
使用具有高空间分辨率的扫描电化学显微镜(SECM)可以对培养细胞的呼吸活性进行电化学监测。然而,在SECM中,电极扫描需要很长时间,限制了与大型生物样本(如细胞球体)的同步测量。因此,需要一种新的策略来进行快速电化学成像。在此,我们首次报道了使用连续电位阶跃对球体呼吸活性进行电化学发光(ECL)成像。鲁米诺类似物L-012用作ECL发光体,通过溶解氧的电化学还原产生L-012的ECL敏化剂HO。ECL成像通过ECL抑制可视化了球体呼吸活性,这与球体周围的氧分布相对应。该方法能够对多个球体的呼吸活性进行延时成像,其空间分辨率与SECM相当。我们的工作为阐明球体细胞动力学提供了一种有前景的高通量成像策略。