Suppr超能文献

高维分析确定了危重症 COVID19 患者康复轨迹中的特定免疫类型。

High dimensional profiling identifies specific immune types along the recovery trajectories of critically ill COVID19 patients.

机构信息

KU Leuven Flow and Mass Cytometry Facility, KU Leuven, Leuven, Belgium.

Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium.

出版信息

Cell Mol Life Sci. 2021 Apr;78(8):3987-4002. doi: 10.1007/s00018-021-03808-8. Epub 2021 Mar 13.

Abstract

The COVID-19 pandemic poses a major burden on healthcare and economic systems across the globe. Even though a majority of the population develops only minor symptoms upon SARS-CoV-2 infection, a significant number are hospitalized at intensive care units (ICU) requiring critical care. While insights into the early stages of the disease are rapidly expanding, the dynamic immunological processes occurring in critically ill patients throughout their recovery at ICU are far less understood. Here, we have analysed whole blood samples serially collected from 40 surviving COVID-19 patients throughout their recovery in ICU using high-dimensional cytometry by time-of-flight (CyTOF) and cytokine multiplexing. Based on the neutrophil-to-lymphocyte ratio (NLR), we defined four sequential immunotypes during recovery that correlated to various clinical parameters, including the level of respiratory support at concomitant sampling times. We identified classical monocytes as the first immune cell type to recover by restoration of HLA-DR-positivity and the reduction of immunosuppressive CD163 + monocytes, followed by the recovery of CD8 + and CD4 + T cell and non-classical monocyte populations. The identified immunotypes also correlated to aberrant cytokine and acute-phase reactant levels. Finally, integrative analysis of cytokines and immune cell profiles showed a shift from an initially dysregulated immune response to a more coordinated immunogenic interplay, highlighting the importance of longitudinal sampling to understand the pathophysiology underlying recovery from severe COVID-19.

摘要

COVID-19 大流行给全球的医疗保健和经济系统带来了重大负担。尽管大多数人在感染 SARS-CoV-2 后只会出现轻微症状,但仍有相当一部分人需要入住重症监护病房(ICU)接受重症监护。尽管人们对疾病早期阶段的认识正在迅速扩展,但对于 ICU 中重症患者在康复过程中发生的动态免疫过程,人们的了解要少得多。在这里,我们使用基于飞行时间(CyTOF)的高维流式细胞术和细胞因子多重分析技术,对 40 名在 ICU 康复过程中连续采集的幸存 COVID-19 患者的全血样本进行了分析。基于中性粒细胞与淋巴细胞比值(NLR),我们在恢复过程中定义了四个连续的免疫类型,这些免疫类型与各种临床参数相关,包括同时采样时呼吸支持的水平。我们发现经典单核细胞是第一个恢复的免疫细胞类型,表现为 HLA-DR 阳性的恢复和免疫抑制性 CD163+单核细胞的减少,随后是 CD8+和 CD4+T 细胞以及非经典单核细胞群的恢复。所鉴定的免疫类型也与异常细胞因子和急性期反应物水平相关。最后,细胞因子和免疫细胞图谱的综合分析显示,从最初失调的免疫反应转变为更协调的免疫相互作用,突出了纵向采样对于理解严重 COVID-19 康复背后的病理生理学的重要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e8c/11071834/d5a47092d04b/18_2021_3808_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验