Department of Biomedical Engineering, University of California, Davis, CA 95616, USA.
Phys Med Biol. 2012 Feb 21;57(4):843-65. doi: 10.1088/0031-9155/57/4/843. Epub 2012 Jan 31.
We report a novel method for estimating fluorescence impulse response function (fIRF) from noise-corrupted time-domain fluorescence measurements of biological tissue. This method is based on the use of high-order Laguerre basis functions and a constrained least-squares approach that addresses the problem of overfitting due to increased model complexity. The new method was extensively evaluated on fluorescence data from simulation, fluorescent standard dyes, ex vivo tissue samples of atherosclerotic plaques and in vivo oral carcinoma. Current results demonstrate that this method allows for rapid and accurate deconvolution of multiple channel fluorescence decays without adaptively adjusting the Laguerre scale parameter. The appropriate choice of the scale parameter is essential for accurate estimation of the fIRF. The method described here is anticipated to play an important role in the development of computational techniques for real-time analysis of time-resolved fluorescence data from biological tissues and to support the advancement of fluorescence lifetime instrumentation for biomedical diagnostics by providing a means for on-line robust analysis of fluorescence decay.
我们提出了一种从生物组织的时域荧光测量中估计荧光脉冲响应函数(fIRF)的新方法。该方法基于使用高阶拉盖尔基函数和受约束的最小二乘方法,解决了由于模型复杂性增加而导致的过拟合问题。新方法在荧光数据的模拟、荧光标准染料、动脉粥样硬化斑块的离体组织样本和体内口腔癌中的广泛评估。目前的结果表明,该方法可以快速准确地解卷积多个通道的荧光衰减,而无需自适应调整拉盖尔尺度参数。适当选择尺度参数对于准确估计 fIRF 至关重要。这里描述的方法有望在开发用于实时分析生物组织的时间分辨荧光数据的计算技术中发挥重要作用,并通过提供在线稳健分析荧光衰减的手段,支持荧光寿命仪器在生物医学诊断中的发展。