Department of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan.
Central Institute for Experimental Animals (CIEA), 3-25-12, Tonomachi, Kawasaki, Kanagawa, 210-0821, Japan.
Sci Rep. 2021 Mar 18;11(1):6234. doi: 10.1038/s41598-021-85807-0.
A brain atlas is necessary for analyzing structure and function in neuroimaging research. Although various annotation volumes (AVs) for the mouse brain have been proposed, it is common in magnetic resonance imaging (MRI) of the mouse brain that regions-of-interest (ROIs) for brain structures (nodes) are created arbitrarily according to each researcher's necessity, leading to inconsistent ROIs among studies. One reason for such a situation is the fact that earlier AVs were fixed, i.e. combination and division of nodes were not implemented. This report presents a pipeline for constructing a flexible annotation atlas (FAA) of the mouse brain by leveraging public resources of the Allen Institute for Brain Science on brain structure, gene expression, and axonal projection. A mere two-step procedure with user-specified, text-based information and Python codes constructs FAA with nodes which can be combined or divided objectively while maintaining anatomical hierarchy of brain structures. Four FAAs with total node count of 4, 101, 866, and 1381 were demonstrated. Unique characteristics of FAA realized analysis of resting-state functional connectivity (FC) across the anatomical hierarchy and among cortical layers, which were thin but large brain structures. FAA can improve the consistency of whole brain ROI definition among laboratories by fulfilling various requests from researchers with its flexibility and reproducibility.
脑图谱对于分析神经影像学研究中的结构和功能是必要的。尽管已经提出了各种用于小鼠脑的注释体积(AV),但在小鼠脑的磁共振成像(MRI)中,根据每个研究人员的需要任意创建脑结构(节点)的感兴趣区域(ROI)是很常见的,导致研究之间的 ROI 不一致。造成这种情况的一个原因是早期的 AV 是固定的,即节点的组合和划分没有实现。本报告介绍了一种通过利用艾伦脑科学研究所的公共脑结构、基因表达和轴突投射资源构建小鼠脑灵活注释图谱(FAA)的流水线。只需两步用户指定的基于文本的信息和 Python 代码的过程,就可以构建具有可客观组合或划分的节点的 FAA,同时保持脑结构的解剖层次结构。展示了总计节点数为 4、101、866 和 1381 的四个 FAA。FAA 的独特之处在于实现了跨越解剖层次和皮质层的静息态功能连接(FC)分析,这些是薄但大脑结构较大的区域。FAA 可以通过其灵活性和可重复性满足研究人员的各种需求,从而提高实验室之间全脑 ROI 定义的一致性。