Ren Yuqi, Hughes James P, Heagerty Patrick J
University of Washington, 4550 11 Ave NE Apt W209, Seattle, WA 98105, USA.
University of Washington, H655F, Health Sciences Building, University of Washington, 1705 NE Pacific St, Seattle, WA 98195, USA.
Stat Biosci. 2020 Dec;12(3):399-415. doi: 10.1007/s12561-019-09259-x. Epub 2019 Oct 23.
This paper studies model-based and design-based approaches for the analysis of data arising from a stepped wedge randomized design. Specifically, for different scenarios we compare robustness, efficiency, Type I error rate under the null hypothesis, and power under the alternative hypothesis for the leading analytical options including generalized estimating equations (GEE) and linear mixed model (LMM) based approaches. We find that GEE models with exchangeable correlation structures are more efficient than GEE models with independent correlation structures under all scenarios considered. The model-based GEE Type I error rate can be inflated when applied with a small number of clusters, but this problem can be solved using a design-based approach. As expected, correct model specification is more important for LMM (compared to GEE) since the model is assumed correct when standard errors are calculated. However, in contrast to the model-based results, the design-based Type I error rates for LMM models under scenarios with a random treatment effect show type I error inflation even though the fitted models perfectly match the corresponding data generating scenarios. Therefore, greater robustness can be realized by combining GEE and permutation testing strategies.
本文研究了基于模型和基于设计的方法,用于分析阶梯楔形随机设计产生的数据。具体而言,针对不同场景,我们比较了包括广义估计方程(GEE)和基于线性混合模型(LMM)的方法在内的主要分析选项在稳健性、效率、原假设下的I型错误率以及备择假设下的检验功效。我们发现,在所有考虑的场景下,具有可交换相关结构的GEE模型比具有独立相关结构的GEE模型更有效。当应用于少量聚类时,基于模型的GEE I型错误率可能会膨胀,但这个问题可以通过基于设计的方法解决。正如预期的那样,正确的模型设定对于LMM(与GEE相比)更为重要,因为在计算标准误差时假设模型是正确的。然而,与基于模型的结果相反,在具有随机处理效应的场景下,LMM模型的基于设计的I型错误率显示出I型错误膨胀,即使拟合模型与相应的数据生成场景完美匹配。因此,通过结合GEE和置换检验策略可以实现更高的稳健性。