Huang Yeqian, Zeng Hao, Chen Linyan, Luo Yuling, Ma Xuelei, Zhao Ye
Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
West China School of Medicine, West China Hospital, Sichuan University, Chengdu, China.
Front Oncol. 2021 Mar 8;11:640881. doi: 10.3389/fonc.2021.640881. eCollection 2021.
Clear cell renal cell carcinoma (ccRCC) is one of the most common malignancies in urinary system, and radiomics has been adopted in tumor staging and prognostic evaluation in renal carcinomas. This study aimed to integrate image features of contrast-enhanced CT and underlying genomics features to predict the overall survival (OS) of ccRCC patients.
We extracted 107 radiomics features out of 205 patients with available CT images obtained from TCIA database and corresponding clinical and genetic information from TCGA database. LASSO-COX and SVM-RFE were employed independently as machine-learning algorithms to select prognosis-related imaging features (PRIF). Afterwards, we identified prognosis-related gene signature through WGCNA. The random forest (RF) algorithm was then applied to integrate PRIF and the genes into a combined imaging-genomics prognostic factors (IGPF) model. Furthermore, we constructed a nomogram incorporating IGPF and clinical predictors as the integrative prognostic model for ccRCC patients.
A total of four PRIF and four genes were identified as IGPF and were represented by corresponding risk score in RF model. The integrative IGPF model presented a better prediction performance than the PRIF model alone (average AUCs for 1-, 3-, and 5-year were 0.814 0.837, 0.74 0.806, and 0.689 0.751 in test set). Clinical characteristics including gender, TNM stage and IGPF were independent risk factors. The nomogram integrating clinical predictors and IGPF provided the best net benefit among the three models.
In this study we established an integrative prognosis-related nomogram model incorporating imaging-genomic features and clinical indicators. The results indicated that IGPF may contribute to a comprehensive prognosis assessment for ccRCC patients.
透明细胞肾细胞癌(ccRCC)是泌尿系统最常见的恶性肿瘤之一,放射组学已应用于肾癌的肿瘤分期和预后评估。本研究旨在整合增强CT的图像特征和潜在的基因组学特征,以预测ccRCC患者的总生存期(OS)。
我们从TCIA数据库中获取的205例有可用CT图像的患者中提取了107个放射组学特征,并从TCGA数据库中获取了相应的临床和基因信息。独立采用LASSO-COX和SVM-RFE作为机器学习算法来选择与预后相关的影像特征(PRIF)。之后,我们通过WGCNA鉴定了与预后相关的基因特征。然后应用随机森林(RF)算法将PRIF和基因整合到一个联合影像基因组预后因子(IGPF)模型中。此外,我们构建了一个列线图,将IGPF和临床预测指标纳入其中,作为ccRCC患者的综合预后模型。
共有4个PRIF和4个基因被鉴定为IGPF,并在RF模型中由相应的风险评分表示。综合IGPF模型比单独的PRIF模型具有更好的预测性能(测试集中1年、3年和5年的平均AUC分别为0.814±0.837、0.74±0.806和0.689±0.751)。包括性别、TNM分期和IGPF在内的临床特征是独立的危险因素。整合临床预测指标和IGPF的列线图在三个模型中提供了最佳净效益。
在本研究中,我们建立了一个整合影像基因组特征和临床指标的与预后相关的列线图模型。结果表明,IGPF可能有助于对ccRCC患者进行全面的预后评估