Suppr超能文献

与综合医疗保健系统中成年成员选择退出自动文本和电话信息相关的因素。

Factors Associated With Opting Out of Automated Text and Telephone Messages Among Adult Members of an Integrated Health Care System.

机构信息

Institute for Health Research, Kaiser Permanente Colorado, Aurora.

出版信息

JAMA Netw Open. 2021 Mar 1;4(3):e213479. doi: 10.1001/jamanetworkopen.2021.3479.

Abstract

IMPORTANCE

Health care systems deliver automated text or telephone messages to remind patients of appointments and to provide health information. Patients who receive multiple messages may demonstrate message fatigue by opting out of future messages.

OBJECTIVE

To assess whether the volume of automated text or interactive voice response (IVR) telephone messages is associated with the likelihood of patients requesting to opt out of future messages.

DESIGN, SETTING, AND PARTICIPANTS: This retrospective cohort study was conducted at Kaiser Permanente Colorado (KPCO), an integrated health care system. All adult members who received 1 or more automated text or IVR message between October 1, 2018, and September 30, 2019, were included.

EXPOSURES

Receipt of automated text or IVR messages.

MAIN OUTCOMES AND MEASURES

Message volume and opt-out rates obtained from messaging systems over 1 year.

RESULTS

Of the 428 242 adults included in this study, 59.7% were women, and 66.5% were White; the mean (SD) age was 52.3 (17.7) years. During the study period, 84.1% received 1 or more text messages (median, 4 messages; interquartile range, 2-8 messages) and 67.8% received 1 or more IVR messages (median, 3 messages; interquartile range, 1-6 messages). A total of 8929 individuals (2.5%) opted out of text messages, and 4392 (1.5%) opted out of IVR messages. In multivariable analyses, individuals who received 10 to 19.9 or 20 or more text messages per year had higher opt-out rates for text messages compared with those who received fewer than 2 messages per year (adjusted odds ratio [aOR]: 10-19.9 vs <2 messages, 1.27 [95% CI, 1.17-1.38]; ≥20 vs <2 messages, 3.58 [95% CI, 3.28-3.91]), whereas opt-out rates increased progressively in association with IVR message volume, with the highest rates among individuals who received 10.0 to 19.9 messages (aOR, 11.11; 95% CI, 9.43-13.08) or 20.0 messages or more (aOR, 49.84; 95% CI, 42.33-58.70). Individuals opting out of text messages were more likely to opt out of IVR messages (aOR, 4.07; 95% CI, 3.65-4.55), and those opting out of IVR messages were more likely to opt out of text messages (aOR, 5.92; 95% CI, 5.29-6.61).

CONCLUSIONS AND RELEVANCE

In this cohort study among adult members of an integrated health care system, requests to discontinue messages were associated with greater message volume. These findings suggest that, to preserve the benefits of automated outreach, health care systems should use these messages judiciously to reduce message fatigue.

摘要

重要性

医疗保健系统会发送自动文本或电话信息来提醒患者预约并提供健康信息。接收多条信息的患者可能会因为选择退出未来的信息而出现信息疲劳。

目的

评估自动文本或交互式语音应答 (IVR) 电话消息的数量是否与患者要求选择退出未来消息的可能性相关。

设计、地点和参与者:这是一项在 Kaiser Permanente Colorado(KPCO)进行的回顾性队列研究,这是一个综合医疗保健系统。所有在 2018 年 10 月 1 日至 2019 年 9 月 30 日期间收到 1 条或多条自动文本或 IVR 消息的成年成员均被纳入研究。

暴露

接收自动文本或 IVR 消息。

主要结果和测量

从消息系统获得的消息量和退出率,为期 1 年。

结果

在这项研究中,428242 名成年人中,59.7%为女性,66.5%为白人;平均(SD)年龄为 52.3(17.7)岁。在研究期间,84.1%的人收到了 1 条或多条文本消息(中位数为 4 条;四分位距为 2-8 条),67.8%的人收到了 1 条或多条 IVR 消息(中位数为 3 条;四分位距为 1-6 条)。共有 8929 人(2.5%)选择退出文本消息,4392 人(1.5%)选择退出 IVR 消息。在多变量分析中,与每年接收少于 2 条消息的人相比,每年接收 10 到 19.9 条或 20 条及以上文本消息的人选择退出文本消息的比例更高(调整后的优势比 [aOR]:10-19.9 与 <2 条消息,1.27[95%CI,1.17-1.38];≥20 与 <2 条消息,3.58[95%CI,3.28-3.91]),而 IVR 消息量与退出率呈递增关系,与每年接收 10.0 到 19.9 条或 20.0 条及以上消息的人相比,退出率最高(aOR,11.11;95%CI,9.43-13.08)或 20.0 条及以上消息(aOR,49.84;95%CI,42.33-58.70)。选择退出文本消息的人更有可能选择退出 IVR 消息(aOR,4.07;95%CI,3.65-4.55),而选择退出 IVR 消息的人更有可能选择退出文本消息(aOR,5.92;95%CI,5.29-6.61)。

结论和相关性

在这项针对综合医疗保健系统成年成员的队列研究中,要求停止发送消息与更大的消息量相关。这些发现表明,为了保持自动外展的好处,医疗保健系统应该谨慎使用这些消息,以减少信息疲劳。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3a42/7998073/268699d228e8/jamanetwopen-e213479-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验