Suppr超能文献

使用优化特征集和机器学习筛查早期阿尔茨海默病。

Screening for Early-Stage Alzheimer's Disease Using Optimized Feature Sets and Machine Learning.

机构信息

Comprehensive Center for Brain Health, Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA.

Center for Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, FL, USA.

出版信息

J Alzheimers Dis. 2021;81(1):355-366. doi: 10.3233/JAD-201377.

Abstract

BACKGROUND

Detecting early-stage Alzheimer's disease in clinical practice is difficult due to a lack of efficient and easily administered cognitive assessments that are sensitive to very mild impairment, a likely contributor to the high rate of undetected dementia.

OBJECTIVE

We aim to identify groups of cognitive assessment features optimized for detecting mild impairment that may be used to improve routine screening. We also compare the efficacy of classifying impairment using either a two-class (impaired versus non-impaired) or three-class using the Clinical Dementia Rating (CDR 0 versus CDR 0.5 versus CDR 1) approach.

METHODS

Supervised feature selection methods generated groups of cognitive measurements targeting impairment defined at CDR 0.5 and above. Random forest classifiers then generated predictions of impairment for each group using highly stochastic cross-validation, with group outputs examined using general linear models.

RESULTS

The strategy of combining impairment levels for two-class classification resulted in significantly higher sensitivities and negative predictive values, two metrics useful in clinical screening, compared to the three-class approach. Four features (delayed WAIS Logical Memory, trail-making, patient and informant memory questions), totaling about 15 minutes of testing time (∼30 minutes with delay), enabled classification sensitivity of 94.53% (88.43% positive predictive value, PPV). The addition of four more features significantly increased sensitivity to 95.18% (88.77% PPV) when added to the model as a second classifier.

CONCLUSION

The high detection rate paired with the minimal assessment time of the four identified features may act as an effective starting point for developing screening protocols targeting cognitive impairment defined at CDR 0.5 and above.

摘要

背景

由于缺乏高效且易于管理的认知评估方法,临床上难以检测早期阿尔茨海默病,而这些方法对非常轻微的损伤较为敏感,这可能是痴呆症漏诊率高的一个原因。

目的

我们旨在确定针对轻度损伤进行优化的认知评估特征组,这些特征可能用于改善常规筛查。我们还比较了使用两种分类(损伤与非损伤)或使用临床痴呆评定量表(CDR 0 与 CDR 0.5 与 CDR 1)的三种分类方法来分类损伤的效果。

方法

监督特征选择方法生成了针对 CDR 0.5 及以上损伤的认知测量特征组。然后,随机森林分类器使用高度随机交叉验证对每组生成损伤预测,使用广义线性模型检查组输出。

结果

与三种分类方法相比,将两种分类的损伤水平相结合的策略显著提高了灵敏度和阴性预测值,这两个指标在临床筛查中非常有用。四项特征(延迟韦氏智力测验逻辑记忆、连线测试、患者和知情者记忆问题),总共测试时间约为 15 分钟(加延迟测试约 30 分钟),使分类灵敏度达到 94.53%(88.43%阳性预测值,PPV)。当将另外四项特征添加到模型中作为第二个分类器时,灵敏度显著提高到 95.18%(88.77%PPV)。

结论

高检测率与所确定的四项特征的最小评估时间相结合,可能成为制定针对 CDR 0.5 及以上认知损伤的筛查方案的有效起点。

相似文献

引用本文的文献

本文引用的文献

2
What older adults do with the results of dementia screening programs.老年人如何对待痴呆筛查项目的结果。
PLoS One. 2020 Jul 1;15(7):e0235534. doi: 10.1371/journal.pone.0235534. eCollection 2020.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验