Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts 02139, USA; email:
Institute for Medical Engineering and Science, MIT, Cambridge, Massachusetts 02139, USA.
Annu Rev Biochem. 2021 Jun 20;90:221-244. doi: 10.1146/annurev-biochem-013118-111914. Epub 2021 Mar 30.
In 1961, Jacob and Monod proposed the operon model of gene regulation. At the model's core was the modular assembly of regulators, operators, and structural genes. To illustrate the composability of these elements, Jacob and Monod linked phenotypic diversity to the architectures of regulatory circuits. In this review, we examine how the circuit blueprints imagined by Jacob and Monod laid the foundation for the first synthetic gene networks that launched the field of synthetic biology in 2000. We discuss the influences of the operon model and its broader theoretical framework on the first generation of synthetic biological circuits, which were predominantly transcriptional and posttranscriptional circuits. We also describe how recent advances in molecular biology beyond the operon model-namely, programmable DNA- and RNA-binding molecules as well as models of epigenetic and posttranslational regulation-are expanding the synthetic biology toolkit and enabling the design of more complex biological circuits.
1961 年,Jacob 和 Monod 提出了基因调控的操纵子模型。该模型的核心是调节因子、操作子和结构基因的模块化组装。为了说明这些元件的可组合性,Jacob 和 Monod 将表型多样性与调节回路的结构联系起来。在这篇综述中,我们探讨了 Jacob 和 Monod 所设想的电路蓝图如何为 2000 年启动合成生物学领域的第一个合成基因网络奠定基础。我们讨论了操纵子模型及其更广泛的理论框架对第一代合成生物电路的影响,这些电路主要是转录和转录后电路。我们还描述了超越操纵子模型的分子生物学的最新进展——即可编程的 DNA 和 RNA 结合分子以及表观遗传和翻译后调控模型——如何扩展合成生物学工具包,并能够设计更复杂的生物电路。