Suppr超能文献

一项利用密歇根大学医学中心电子健康记录数据按种族进行的新冠肺炎结局全表型组关联研究(PheWAS)。

A Phenome-Wide Association Study (PheWAS) of COVID-19 Outcomes by Race Using the Electronic Health Records Data in Michigan Medicine.

作者信息

Salvatore Maxwell, Gu Tian, Mack Jasmine A, Prabhu Sankar Swaraaj, Patil Snehal, Valley Thomas S, Singh Karandeep, Nallamothu Brahmajee K, Kheterpal Sachin, Lisabeth Lynda, Fritsche Lars G, Mukherjee Bhramar

机构信息

Department of Biostatistics, University of Michigan School of Public Health, 1415 Washington Heights, Ann Arbor, MI 48109, USA.

Center for Precision Health Data Science, University of Michigan, Ann Arbor, MI 48109, USA.

出版信息

J Clin Med. 2021 Mar 25;10(7):1351. doi: 10.3390/jcm10071351.

Abstract

BACKGROUND

We performed a phenome-wide association study to identify pre-existing conditions related to Coronavirus disease 2019 (COVID-19) prognosis across the medical phenome and how they vary by race.

METHODS

The study is comprised of 53,853 patients who were tested/diagnosed for COVID-19 between 10 March and 2 September 2020 at a large academic medical center.

RESULTS

Pre-existing conditions strongly associated with hospitalization were renal failure, pulmonary heart disease, and respiratory failure. Hematopoietic conditions were associated with intensive care unit (ICU) admission/mortality and mental disorders were associated with mortality in non-Hispanic Whites. Circulatory system and genitourinary conditions were associated with ICU admission/mortality in non-Hispanic Blacks.

CONCLUSIONS

Understanding pre-existing clinical diagnoses related to COVID-19 outcomes informs the need for targeted screening to support specific vulnerable populations to improve disease prevention and healthcare delivery.

摘要

背景

我们开展了一项全表型关联研究,以确定整个医学表型中与2019冠状病毒病(COVID-19)预后相关的既往疾病,以及这些疾病如何因种族而异。

方法

该研究纳入了2020年3月10日至9月2日期间在一家大型学术医疗中心接受COVID-19检测/诊断的53853名患者。

结果

与住院密切相关的既往疾病为肾衰竭、肺心病和呼吸衰竭。血液系统疾病与重症监护病房(ICU)收治/死亡相关,精神障碍与非西班牙裔白人的死亡相关。循环系统和泌尿生殖系统疾病与非西班牙裔黑人的ICU收治/死亡相关。

结论

了解与COVID-19结局相关的既往临床诊断,有助于明确针对性筛查的必要性,以支持特定的弱势群体,从而改善疾病预防和医疗服务。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3af9/8037108/3d5fc9d0c2fa/jcm-10-01351-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验