Suppr超能文献

ASCU-Net:用于皮肤病变分割的注意力门控、空间和通道注意力U-Net

ASCU-Net: Attention Gate, Spatial and Channel Attention U-Net for Skin Lesion Segmentation.

作者信息

Tong Xiaozhong, Wei Junyu, Sun Bei, Su Shaojing, Zuo Zhen, Wu Peng

机构信息

College of Intelligence Science and Technology, National University of Defense Technology, Changsha 410073, China.

出版信息

Diagnostics (Basel). 2021 Mar 12;11(3):501. doi: 10.3390/diagnostics11030501.

Abstract

Segmentation of skin lesions is a challenging task because of the wide range of skin lesion shapes, sizes, colors, and texture types. In the past few years, deep learning networks such as U-Net have been successfully applied to medical image segmentation and exhibited faster and more accurate performance. In this paper, we propose an extended version of U-Net for the segmentation of skin lesions using the concept of the triple attention mechanism. We first selected regions using attention coefficients computed by the attention gate and contextual information. Second, a dual attention decoding module consisting of spatial attention and channel attention was used to capture the spatial correlation between features and improve segmentation performance. The combination of the three attentional mechanisms helped the network to focus on a more relevant field of view of the target. The proposed model was evaluated using three datasets, ISIC-2016, ISIC-2017, and PH2. The experimental results demonstrated the effectiveness of our method with strong robustness to the presence of irregular borders, lesion and skin smooth transitions, noise, and artifacts.

摘要

由于皮肤病变的形状、大小、颜色和纹理类型范围广泛,皮肤病变的分割是一项具有挑战性的任务。在过去几年中,诸如U-Net之类的深度学习网络已成功应用于医学图像分割,并表现出更快、更准确的性能。在本文中,我们提出了一种U-Net的扩展版本,用于使用三重注意力机制的概念对皮肤病变进行分割。我们首先使用注意力门和上下文信息计算出的注意力系数来选择区域。其次,使用由空间注意力和通道注意力组成的双重注意力解码模块来捕获特征之间的空间相关性并提高分割性能。这三种注意力机制的结合有助于网络专注于目标更相关的视野。使用三个数据集ISIC-2016、ISIC-2017和PH2对所提出的模型进行了评估。实验结果证明了我们方法的有效性,该方法对不规则边界、病变与皮肤的平滑过渡、噪声和伪影具有很强的鲁棒性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a2ff/7999819/c7f925c718cc/diagnostics-11-00501-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验