Al-Kattan Ahmed, Grojo David, Drouet Christophe, Mouskeftaras Alexandros, Delaporte Philippe, Casanova Adrien, Robin Jérôme D, Magdinier Frédérique, Alloncle Patricia, Constantinescu Catalin, Motto-Ros Vincent, Hermann Jörg
Aix-Marseille University, CNRS, LP3 UMR 7341, Campus de Luminy, Case 917, CEDEX 09, 13288 Marseille, France.
CIRIMAT, Université de Toulouse, UMR 5085 CNRS/Toulouse INP/UT3 Paul Sabatier, Ensiacet, 4 allée E. Monso, CEDEX 04, 31030 Toulouse, France.
Nanomaterials (Basel). 2021 Mar 12;11(3):712. doi: 10.3390/nano11030712.
Driven by flexibility, precision, repeatability and eco-friendliness, laser-based technologies have attracted great interest to engineer or to analyze materials in various fields including energy, environment, biology and medicine. A major advantage of laser processing relies on the ability to directly structure matter at different scales and to prepare novel materials with unique physical and chemical properties. It is also a contact-free approach that makes it possible to work in inert or reactive liquid or gaseous environment. This leads today to a unique opportunity for designing, fabricating and even analyzing novel complex bio-systems. To illustrate this potential, in this paper, we gather our recent research on four types of laser-based methods relevant for nano-/micro-scale applications. First, we present and discuss pulsed laser ablation in liquid, exploited today for synthetizing ultraclean "bare" nanoparticles attractive for medicine and tissue engineering applications. Second, we discuss robust methods for rapid surface and bulk machining (subtractive manufacturing) at different scales by laser ablation. Among them, the microsphere-assisted laser surface engineering is detailed for its appropriateness to design structured substrates with hierarchically periodic patterns at nano-/micro-scale without chemical treatments. Third, we address the laser-induced forward transfer, a technology based on direct laser printing, to transfer and assemble a multitude of materials (additive structuring), including biological moiety without alteration of functionality. Finally, the fourth method is about chemical analysis: we present the potential of laser-induced breakdown spectroscopy, providing a unique tool for contact-free and space-resolved elemental analysis of organic materials. Overall, we present and discuss the prospect and complementarity of emerging reliable laser technologies, to address challenges in materials' preparation relevant for the development of innovative multi-scale and multi-material platforms for bio-applications.
在灵活性、精度、可重复性和环保性的驱动下,基于激光的技术在包括能源、环境、生物学和医学在内的各个领域对材料进行工程设计或分析方面引起了极大的兴趣。激光加工的一个主要优点在于能够在不同尺度上直接对物质进行结构化处理,并制备具有独特物理和化学性质的新型材料。它也是一种非接触式方法,使得在惰性或反应性液体或气体环境中工作成为可能。这为设计、制造甚至分析新型复杂生物系统带来了独特的机遇。为了说明这种潜力,在本文中,我们总结了我们最近对四种与纳米/微米尺度应用相关的基于激光的方法的研究。首先,我们介绍并讨论液体中的脉冲激光烧蚀,目前该方法用于合成对医学和组织工程应用有吸引力的超清洁“裸”纳米颗粒。其次,我们讨论通过激光烧蚀在不同尺度上进行快速表面和体加工(减法制造)的稳健方法。其中,微球辅助激光表面工程因其适合在不进行化学处理的情况下在纳米/微米尺度设计具有分层周期性图案的结构化基板而得到详细介绍。第三,我们介绍激光诱导正向转移,这是一种基于直接激光打印的技术,用于转移和组装多种材料(加法结构化),包括生物部分且不改变其功能。最后,第四种方法是关于化学分析:我们介绍激光诱导击穿光谱的潜力,它为有机材料的非接触式和空间分辨元素分析提供了一种独特的工具。总体而言,我们介绍并讨论新兴可靠激光技术的前景和互补性,以应对与开发用于生物应用的创新多尺度和多材料平台相关的材料制备挑战。