Suppr超能文献

用于 COVID-19 检测的混合深度神经网络 (HDNNs)、计算机断层扫描和胸部 X 射线的作用。

Role of Hybrid Deep Neural Networks (HDNNs), Computed Tomography, and Chest X-rays for the Detection of COVID-19.

机构信息

Electrical Engineering Department, College of Engineering, Najran University, Najran 61441, Saudi Arabia.

Department of Computer Science, Lahore Campus, COMSATS University Islamabad, Lahore 54000, Pakistan.

出版信息

Int J Environ Res Public Health. 2021 Mar 16;18(6):3056. doi: 10.3390/ijerph18063056.

Abstract

COVID-19 syndrome has extensively escalated worldwide with the induction of the year 2020 and has resulted in the illness of millions of people. COVID-19 patients bear an elevated risk once the symptoms deteriorate. Hence, early recognition of diseased patients can facilitate early intervention and avoid disease succession. This article intends to develop a hybrid deep neural networks (HDNNs), using computed tomography (CT) and X-ray imaging, to predict the risk of the onset of disease in patients suffering from COVID-19. To be precise, the subjects were classified into 3 categories namely normal, Pneumonia, and COVID-19. Initially, the CT and chest X-ray images, denoted as 'hybrid images' (with resolution 1080 × 1080) were collected from different sources, including GitHub, COVID-19 radiography database, Kaggle, COVID-19 image data collection, and Actual Med COVID-19 Chest X-ray Dataset, which are open source and publicly available data repositories. The 80% hybrid images were used to train the hybrid deep neural network model and the remaining 20% were used for the testing purpose. The capability and prediction accuracy of the HDNNs were calculated using the confusion matrix. The hybrid deep neural network showed a 99% classification accuracy on the test set data.

摘要

COVID-19 综合征在 2020 年的爆发后在全球范围内广泛升级,导致数百万人患病。COVID-19 患者一旦症状恶化,风险就会增加。因此,早期识别患病患者可以促进早期干预,避免疾病恶化。本文旨在开发一种混合深度神经网络(HDNN),使用计算机断层扫描(CT)和 X 射线成像来预测 COVID-19 患者发病的风险。准确地说,这些患者被分为 3 类:正常、肺炎和 COVID-19。最初,从不同来源收集了 CT 和胸部 X 射线图像,称为“混合图像”(分辨率为 1080×1080),包括 GitHub、COVID-19 射线照相数据库、Kaggle、COVID-19 图像数据收集和 Actual Med COVID-19 胸部 X 射线数据集,这些都是开源和公开可用的数据存储库。将 80%的混合图像用于训练混合深度神经网络模型,其余 20%用于测试目的。使用混淆矩阵计算 HDNN 的能力和预测精度。混合深度神经网络在测试集数据上的分类准确率为 99%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aba3/8002268/d3d9a41ad15a/ijerph-18-03056-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验