Goud K Yugender, Sandhu Samar S, Teymourian Hazhir, Yin Lu, Tostado Nicholas, Raushel Frank M, Harvey Steven P, Moores Lee C, Wang Joseph
Department of Nanoengineering, University of California, San Diego, La Jolla, CA, 92093, United States.
Department of Chemistry, Texas A&M University, College Station, TX, 77843, United States.
Biosens Bioelectron. 2021 Jun 15;182:113172. doi: 10.1016/j.bios.2021.113172. Epub 2021 Mar 23.
Rising global concerns posed by chemical and biological threat agents highlight the critical need to develop reliable strategies for the real-time detection of such threats. While wearable sensing technology is well suited to fulfill this task, the use of on-body devices for rapid and selective field identification of chemical agents is relatively a new area. This work describes a flexible printed textile-based solid-contact potentiometric sensor for the selective detection of fluoride anions liberated by the biocatalytic hydrolysis of fluorine-containing G-type nerve agents (such as sarin or soman). The newly developed solid-contact textile fluoride sensor relies on a fluoride-selective bis(fluorodioctylstannyl)methane ionophore to provide attractive analytical performance with near-Nernstian sensitivity and effective discrimination against common anions, along with excellent reversibility and repeatability for dynamically changing fluoride concentrations. By using stress-enduring printed inks and serpentine structures along with stretchable textile substrates, the resulting textile-based fluoride sensor exhibits robust mechanical resiliency under severe mechanical strains. Such realization of an effective textile-based fluoride-selective electrode allowed biosensing of the nerve-agent simulant diisopropyl fluorophosphate (DFP), in connection to immobilized organophosphorus acid anhydrolylase (OPAA) or organophosphorus hydrolase (OPH) enzymes. A user-friendly portable electronic module transmits data from the new textile-based potentiometric biosensor wirelessly to a nearby smartphone for alerting the wearer instantaneously about potential chemical threats. While expanding the scope of wearable solid-contact anion sensors, such a textile-based potentiometric fluoride electrode transducer offers particular promise for effective discrimination of G-type neurotoxins from organophosphate (OP) pesticides, toward specific field detection of these agents in diverse defense settings.
化学和生物威胁因子引发的全球关注日益增加,凸显了制定可靠策略以实时检测此类威胁的迫切需求。虽然可穿戴传感技术非常适合完成这项任务,但使用人体设备对化学制剂进行快速、选择性的现场识别相对来说是一个新领域。这项工作描述了一种基于柔性印刷纺织品的固体接触电位传感器,用于选择性检测含氟G型神经毒剂(如沙林或梭曼)生物催化水解释放的氟阴离子。新开发的固体接触纺织品氟化物传感器依靠一种氟选择性双(氟二辛基锡基)甲烷离子载体,提供具有近能斯特灵敏度的诱人分析性能,有效区分常见阴离子,以及对动态变化的氟化物浓度具有出色的可逆性和重复性。通过使用耐应力印刷油墨和蛇形结构以及可拉伸的纺织品基材,所得的基于纺织品的氟化物传感器在严重机械应变下表现出强大的机械弹性。这种有效的基于纺织品的氟选择性电极的实现允许对神经毒剂模拟物氟磷酸二异丙酯(DFP)进行生物传感,这与固定化的有机磷酸酸酐水解酶(OPAA)或有机磷水解酶(OPH)有关。一个用户友好的便携式电子模块将新的基于纺织品的电位生物传感器的数据无线传输到附近的智能手机,以便立即提醒佩戴者潜在的化学威胁。在扩大可穿戴固体接触阴离子传感器范围的同时,这种基于纺织品的电位氟化物电极换能器为有效区分G型神经毒素和有机磷(OP)农药提供了特别的前景,有助于在各种防御环境中对这些制剂进行特定的现场检测。