Oxford University Centre for Clinical Magnetic Resonance Research (OCMR), Level 0, John Radcliffe Hospital, Headington, Oxford OX3 9DU, United Kingdom.
Oxford University Centre for Clinical Magnetic Resonance Research (OCMR), Level 0, John Radcliffe Hospital, Headington, Oxford OX3 9DU, United Kingdom.
Med Image Anal. 2021 Jul;71:102029. doi: 10.1016/j.media.2021.102029. Epub 2021 Mar 11.
Recent developments in artificial intelligence have generated increasing interest to deploy automated image analysis for diagnostic imaging and large-scale clinical applications. However, inaccuracy from automated methods could lead to incorrect conclusions, diagnoses or even harm to patients. Manual inspection for potential inaccuracies is labor-intensive and time-consuming, hampering progress towards fast and accurate clinical reporting in high volumes. To promote reliable fully-automated image analysis, we propose a quality control-driven (QCD) segmentation framework. It is an ensemble of neural networks that integrate image analysis and quality control. The novelty of this framework is the selection of the most optimal segmentation based on predicted segmentation accuracy, on-the-fly. Additionally, this framework visualizes segmentation agreement to provide traceability of the quality control process. In this work, we demonstrated the utility of the framework in cardiovascular magnetic resonance T1-mapping - a quantitative technique for myocardial tissue characterization. The framework achieved near-perfect agreement with expert image analysts in estimating myocardial T1 value (r=0.987,p<.0005; mean absolute error (MAE)=11.3ms), with accurate segmentation quality prediction (Dice coefficient prediction MAE=0.0339) and classification (accuracy=0.99), and a fast average processing time of 0.39 second/image. In summary, the QCD framework can generate high-throughput automated image analysis with speed and accuracy that is highly desirable for large-scale clinical applications.
人工智能的最新进展引起了人们对将自动化图像分析应用于诊断成像和大规模临床应用的浓厚兴趣。然而,自动化方法的不准确可能导致错误的结论、诊断甚至对患者造成伤害。手动检查潜在的不准确是劳动密集型和耗时的,阻碍了在大量数据中实现快速和准确的临床报告的进展。为了促进可靠的全自动图像分析,我们提出了一种质量控制驱动(QCD)分割框架。它是一个集成了图像分析和质量控制的神经网络集合。该框架的新颖之处在于基于预测的分割准确性,实时选择最优化的分割。此外,该框架可视化分割一致性,为质量控制过程提供可追溯性。在这项工作中,我们展示了该框架在心血管磁共振 T1 映射中的实用性,这是一种用于心肌组织特征化的定量技术。该框架在估计心肌 T1 值方面与专家图像分析师达成了近乎完美的一致(r=0.987,p<.0005;平均绝对误差(MAE)=11.3ms),具有准确的分割质量预测(Dice 系数预测 MAE=0.0339)和分类(准确率=0.99),平均处理速度为 0.39 秒/张。总之,QCD 框架可以以高速和高精度生成高通量的自动化图像分析,这对于大规模的临床应用是非常理想的。