Suppr超能文献

用计算机断层扫描偶然发现前列腺癌。

Incidental detection of prostate cancer with computed tomography scans.

机构信息

School of Engineering, RMIT University, Melbourne, 3000, Australia.

School of Computing Technologies, RMIT University, Melbourne, 3000, Australia.

出版信息

Sci Rep. 2021 Apr 12;11(1):7956. doi: 10.1038/s41598-021-86972-y.

Abstract

Prostate cancer (PCa) is the second most frequent type of cancer found in men worldwide, with around one in nine men being diagnosed with PCa within their lifetime. PCa often shows no symptoms in its early stages and its diagnosis techniques are either invasive, resource intensive, or has low efficacy, making widespread early detection onerous. Inspired by the recent success of deep convolutional neural networks (CNN) in computer aided detection (CADe), we propose a new CNN based framework for incidental detection of clinically significant prostate cancer (csPCa) in patients who had a CT scan of the abdomen/pelvis for other reasons. While CT is generally considered insufficient to diagnose PCa due to its inferior soft tissue characterisation, our evaluations on a relatively large dataset consisting of 139 clinically significant PCa patients and 432 controls show that the proposed deep neural network pipeline can detect csPCa patients at a level that is suitable for incidental detection. The proposed pipeline achieved an area under the receiver operating characteristic curve (ROC-AUC) of 0.88 (95% Confidence Interval: 0.86-0.90) at patient level csPCa detection on CT, significantly higher than the AUCs achieved by two radiologists (0.61 and 0.70) on the same task.

摘要

前列腺癌(PCa)是全球男性中第二常见的癌症类型,大约每九名男性中就有一名在其一生中被诊断出患有 PCa。PCa 在早期通常没有症状,其诊断技术要么具有侵入性、资源密集型,要么效果不佳,因此广泛进行早期检测困难重重。受深度卷积神经网络(CNN)在计算机辅助检测(CADe)中最近取得的成功的启发,我们提出了一种新的基于 CNN 的框架,用于在因其他原因接受腹部/骨盆 CT 扫描的患者中偶然检测临床上显著的前列腺癌(csPCa)。虽然 CT 通常由于其软组织特征较差而不足以诊断 PCa,但我们对包含 139 名临床上显著的 PCa 患者和 432 名对照的相对较大数据集的评估表明,所提出的深度神经网络管道可以检测到 csPCa 患者,其水平适合偶然检测。该提出的管道在 CT 上进行患者级别的 csPCa 检测时,获得了 0.88 的接收器工作特征曲线下面积(ROC-AUC)(95%置信区间:0.86-0.90),明显高于两位放射科医生在同一任务上获得的 AUC(0.61 和 0.70)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/742c/8041828/4a3182aeadfa/41598_2021_86972_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验