Suppr超能文献

氧化应激感应与神经干细胞命运的反应

Oxidative stress sensing and response in neural stem cell fate.

机构信息

R&D Center, OneCureGEN Co., Ltd, Daejeon, 34141, Republic of Korea; Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA.

University of Chicago, Chicago, IL, 60637, USA.

出版信息

Free Radic Biol Med. 2021 Jun;169:74-83. doi: 10.1016/j.freeradbiomed.2021.03.043. Epub 2021 Apr 18.

Abstract

Neural stem/progenitor cells (NSPCs) contribute to the physiological cellular turnover of the adult brain and make up its regenerative potential. It is thus essential to understand how different factors influence their proliferation and differentiation to gain better insight into potential therapeutic targets in neurodegenerative diseases and traumatic brain injuries. Recent evidences indicate the roles of redox stress sensing and coping mechanisms in mediating the balance between NSPC self-renewal and differentiation. Such mechanisms involve direct cysteine modification, signaling and metabolic reprogramming, epigenetic alterations and transcription changes leading to adaptive responses like autophagy. Here, we discuss emerging findings on the involvement of redox sensors and effectors and their mechanisms in influencing changes in cellular redox potential and NSPC fate.

摘要

神经干细胞/祖细胞(NSPCs)为成年大脑的生理细胞更新做出贡献,并构成其再生潜力。因此,了解不同因素如何影响它们的增殖和分化对于深入了解神经退行性疾病和创伤性脑损伤的潜在治疗靶点至关重要。最近的证据表明,氧化还原应激感应和应对机制在调节 NSPC 自我更新和分化之间的平衡中发挥作用。这些机制涉及直接半胱氨酸修饰、信号转导和代谢重编程、表观遗传改变和转录变化,导致自噬等适应性反应。在这里,我们讨论了氧化还原传感器和效应器及其机制在影响细胞氧化还原电位和 NSPC 命运变化中的作用的新发现。

相似文献

1
Oxidative stress sensing and response in neural stem cell fate.
Free Radic Biol Med. 2021 Jun;169:74-83. doi: 10.1016/j.freeradbiomed.2021.03.043. Epub 2021 Apr 18.
2
Redox-regulated fate of neural stem progenitor cells.
Biochim Biophys Acta. 2015 Aug;1850(8):1543-54. doi: 10.1016/j.bbagen.2015.01.022. Epub 2015 Feb 7.
3
Reactive Oxygen Species and Mitochondrial Homeostasis as Regulators of Stem Cell Fate and Function.
Antioxid Redox Signal. 2018 Jul 10;29(2):149-168. doi: 10.1089/ars.2017.7273. Epub 2017 Oct 26.
5
Metabolic control of adult neural stem cell self-renewal by the mitochondrial protease YME1L.
Cell Rep. 2022 Feb 15;38(7):110370. doi: 10.1016/j.celrep.2022.110370.
6
Reduced Nrf2 expression mediates the decline in neural stem cell function during a critical middle-age period.
Aging Cell. 2016 Aug;15(4):725-36. doi: 10.1111/acel.12482. Epub 2016 Apr 20.
7
Oxidative stress-mediated protein sulfenylation in human diseases: Past, present, and future.
Redox Biol. 2024 Oct;76:103332. doi: 10.1016/j.redox.2024.103332. Epub 2024 Aug 30.
8
Epigenetic plasticity and redox regulation of neural stem cell state and fate.
Free Radic Biol Med. 2021 Jul;170:116-130. doi: 10.1016/j.freeradbiomed.2021.02.030. Epub 2021 Mar 6.
9
A Role for Nrf2 Expression in Defining the Aging of Hippocampal Neural Stem Cells.
Cell Transplant. 2018 Apr;27(4):589-606. doi: 10.1177/0963689718774030. Epub 2018 Jun 5.

引用本文的文献

1
Emerging Insights into Brain Inflammation: Stem-Cell-Based Approaches for Regenerative Medicine.
Int J Mol Sci. 2025 Apr 1;26(7):3275. doi: 10.3390/ijms26073275.
2
Regulation of adult neurogenesis: the crucial role of astrocytic mitochondria.
Front Mol Neurosci. 2024 Nov 22;17:1516119. doi: 10.3389/fnmol.2024.1516119. eCollection 2024.
3
Melatonin-based priming of stem cells to alleviate oxidative stress.
World J Stem Cells. 2024 Nov 26;16(11):985-989. doi: 10.4252/wjsc.v16.i11.985.
4
Cellular stress and epigenetic regulation in adult stem cells.
Life Sci Alliance. 2024 Sep 30;7(12). doi: 10.26508/lsa.202302083. Print 2024 Dec.
5
8
Resolving Geroplasticity to the Balance of Rejuvenins and Geriatrins.
Aging Dis. 2022 Dec 1;13(6):1664-1714. doi: 10.14336/AD.2022.0414.
10
Tetrahydrofolate Alleviates the Inhibitory Effect of Oxidative Stress on Neural Stem Cell Proliferation through PTEN/Akt/mTOR Pathway.
Oxid Med Cell Longev. 2022 Feb 27;2022:9021474. doi: 10.1155/2022/9021474. eCollection 2022.

本文引用的文献

2
ROS Dynamics Delineate Functional States of Hippocampal Neural Stem Cells and Link to Their Activity-Dependent Exit from Quiescence.
Cell Stem Cell. 2021 Feb 4;28(2):300-314.e6. doi: 10.1016/j.stem.2020.10.019. Epub 2020 Dec 3.
3
Neuroprotective Effect of Antioxidants in the Brain.
Int J Mol Sci. 2020 Sep 28;21(19):7152. doi: 10.3390/ijms21197152.
4
Reactive oxygen species oxidize STING and suppress interferon production.
Elife. 2020 Sep 4;9:e57837. doi: 10.7554/eLife.57837.
5
Nrf2/Wnt resilience orchestrates rejuvenation of glia-neuron dialogue in Parkinson's disease.
Redox Biol. 2020 Sep;36:101664. doi: 10.1016/j.redox.2020.101664. Epub 2020 Aug 1.
7
Personalized iPSC-Derived Dopamine Progenitor Cells for Parkinson's Disease.
N Engl J Med. 2020 May 14;382(20):1926-1932. doi: 10.1056/NEJMoa1915872.
8
PKG1α Cysteine-42 Redox State Controls mTORC1 Activation in Pathological Cardiac Hypertrophy.
Circ Res. 2020 Jul 31;127(4):522-533. doi: 10.1161/CIRCRESAHA.119.315714. Epub 2020 May 12.
9
Oxidative stress regulates progenitor behavior and cortical neurogenesis.
Development. 2020 Mar 11;147(5):dev184150. doi: 10.1242/dev.184150.
10
NRF2 as a Therapeutic Target in Neurodegenerative Diseases.
ASN Neuro. 2020 Jan-Dec;12:1759091419899782. doi: 10.1177/1759091419899782.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验