Suppr超能文献

基因-基因相互作用决定铜绿假单胞菌对环丙沙星的耐药性,并有助于从基因组序列数据预测耐药表型。

Gene-Gene Interactions Dictate Ciprofloxacin Resistance in Pseudomonas aeruginosa and Facilitate Prediction of Resistance Phenotype from Genome Sequence Data.

机构信息

Department of Biochemistry, University of Otago, Dunedin, New Zealand.

Institut de biologie intégrative et des systèmes (IBIS), Université Laval, Quebec City, Québec, Canada.

出版信息

Antimicrob Agents Chemother. 2021 Jun 17;65(7):e0269620. doi: 10.1128/AAC.02696-20.

Abstract

Ciprofloxacin is one of the most widely used antibiotics for treating Pseudomonas aeruginosa infections. However, P. aeruginosa acquires mutations that confer ciprofloxacin resistance, making treatment more difficult. Resistance is multifactorial, with mutations in multiple genes influencing the resistance phenotype. However, the contributions of individual mutations and mutation combinations to the amounts of ciprofloxacin that P. aeruginosa can tolerate are not well understood. Engineering P. aeruginosa strain PAO1 to contain mutations in any one of the resistance-associated genes , , , , and showed that only mutations increased the MIC for ciprofloxacin. Mutations in and increased the MIC of a mutant, making the bacteria ciprofloxacin resistant. Mutations in and increased the MIC, conferring resistance, only if both were mutated in a background. Mutations in all of , , , and further increased the MIC. These findings reveal an epistatic network of gene-gene interactions in ciprofloxacin resistance. We used this information to predict ciprofloxacin resistance/susceptibility for 274 isolates of P. aeruginosa from their genome sequences. Antibiotic susceptibility profiles were predicted correctly for 84% of the isolates. The majority of isolates for which prediction was unsuccessful were ciprofloxacin resistant, demonstrating the involvement of additional as yet unidentified genes and mutations in resistance. Our data show that gene-gene interactions can play an important role in antibiotic resistance and can be successfully incorporated into models predicting resistance phenotype.

摘要

环丙沙星是治疗铜绿假单胞菌感染最常用的抗生素之一。然而,铜绿假单胞菌会发生突变,从而获得对环丙沙星的耐药性,使治疗更加困难。耐药性是多因素的,多个基因的突变会影响耐药表型。然而,个体突变和突变组合对铜绿假单胞菌能够耐受环丙沙星的量的贡献尚不清楚。工程菌 PAO1 中的任何一个耐药相关基因( , , , ,和 )发生突变,结果表明只有 突变增加了环丙沙星的 MIC。 突变和 突变增加了 突变体的 MIC,使细菌对环丙沙星产生耐药性。 突变和 突变仅在 背景下发生时才增加 MIC,从而赋予耐药性。 , , 和 中的所有突变进一步增加了 MIC。这些发现揭示了铜绿假单胞菌对环丙沙星耐药性的基因-基因相互作用的上位性网络。我们利用这些信息从基因组序列预测了 274 株铜绿假单胞菌对环丙沙星的耐药性/敏感性。抗生素敏感性谱对 84%的分离株的预测是正确的。预测失败的大多数分离株对环丙沙星耐药,表明耐药性还涉及其他尚未鉴定的基因和突变。我们的数据表明,基因-基因相互作用可以在抗生素耐药性中发挥重要作用,并可以成功地纳入预测耐药表型的模型中。

相似文献

引用本文的文献

本文引用的文献

1
Epigenetic Memories: The Hidden Drivers of Bacterial Persistence?表观遗传记忆:细菌持续存在的潜在驱动力?
Trends Microbiol. 2021 Mar;29(3):190-194. doi: 10.1016/j.tim.2020.12.005. Epub 2021 Jan 4.
4
Innovative and rapid antimicrobial susceptibility testing systems.创新和快速的抗菌药物敏感性测试系统。
Nat Rev Microbiol. 2020 May;18(5):299-311. doi: 10.1038/s41579-020-0327-x. Epub 2020 Feb 13.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验