Department of Biochemistry, University of Otago, Dunedin, New Zealand.
Institut de biologie intégrative et des systèmes (IBIS), Université Laval, Quebec City, Québec, Canada.
Antimicrob Agents Chemother. 2021 Jun 17;65(7):e0269620. doi: 10.1128/AAC.02696-20.
Ciprofloxacin is one of the most widely used antibiotics for treating Pseudomonas aeruginosa infections. However, P. aeruginosa acquires mutations that confer ciprofloxacin resistance, making treatment more difficult. Resistance is multifactorial, with mutations in multiple genes influencing the resistance phenotype. However, the contributions of individual mutations and mutation combinations to the amounts of ciprofloxacin that P. aeruginosa can tolerate are not well understood. Engineering P. aeruginosa strain PAO1 to contain mutations in any one of the resistance-associated genes , , , , and showed that only mutations increased the MIC for ciprofloxacin. Mutations in and increased the MIC of a mutant, making the bacteria ciprofloxacin resistant. Mutations in and increased the MIC, conferring resistance, only if both were mutated in a background. Mutations in all of , , , and further increased the MIC. These findings reveal an epistatic network of gene-gene interactions in ciprofloxacin resistance. We used this information to predict ciprofloxacin resistance/susceptibility for 274 isolates of P. aeruginosa from their genome sequences. Antibiotic susceptibility profiles were predicted correctly for 84% of the isolates. The majority of isolates for which prediction was unsuccessful were ciprofloxacin resistant, demonstrating the involvement of additional as yet unidentified genes and mutations in resistance. Our data show that gene-gene interactions can play an important role in antibiotic resistance and can be successfully incorporated into models predicting resistance phenotype.
环丙沙星是治疗铜绿假单胞菌感染最常用的抗生素之一。然而,铜绿假单胞菌会发生突变,从而获得对环丙沙星的耐药性,使治疗更加困难。耐药性是多因素的,多个基因的突变会影响耐药表型。然而,个体突变和突变组合对铜绿假单胞菌能够耐受环丙沙星的量的贡献尚不清楚。工程菌 PAO1 中的任何一个耐药相关基因( , , , ,和 )发生突变,结果表明只有 突变增加了环丙沙星的 MIC。 突变和 突变增加了 突变体的 MIC,使细菌对环丙沙星产生耐药性。 突变和 突变仅在 背景下发生时才增加 MIC,从而赋予耐药性。 , , 和 中的所有突变进一步增加了 MIC。这些发现揭示了铜绿假单胞菌对环丙沙星耐药性的基因-基因相互作用的上位性网络。我们利用这些信息从基因组序列预测了 274 株铜绿假单胞菌对环丙沙星的耐药性/敏感性。抗生素敏感性谱对 84%的分离株的预测是正确的。预测失败的大多数分离株对环丙沙星耐药,表明耐药性还涉及其他尚未鉴定的基因和突变。我们的数据表明,基因-基因相互作用可以在抗生素耐药性中发挥重要作用,并可以成功地纳入预测耐药表型的模型中。