Suppr超能文献

开发和验证一种用于急诊科分诊期间儿童脓毒症和失代偿的早期预警工具。

Development and validation of an early warning tool for sepsis and decompensation in children during emergency department triage.

机构信息

Children's Health of Orange County, 1201 W La Veta Ave, Orange, CA, 92868, USA.

出版信息

Sci Rep. 2021 Apr 21;11(1):8578. doi: 10.1038/s41598-021-87595-z.

Abstract

This study was designed to develop and validate an early warning system for sepsis based on a predictive model of critical decompensation. Data from the electronic medical records for 537,837 visits to a pediatric Emergency Department (ED) from March 2013 to December 2019 were collected. A multiclass stochastic gradient boosting model was built to identify early warning signs associated with death, severe sepsis, non-severe sepsis, and bacteremia. Model features included triage vital signs, previous diagnoses, medications, and healthcare utilizations within 6 months of the index ED visit. There were 483 patients who had severe sepsis and/or died, 1102 had non-severe sepsis, 1103 had positive bacteremia tests, and the remaining had none of the events. The most important predictors were age, heart rate, length of stay of previous hospitalizations, temperature, systolic blood pressure, and prior sepsis. The one-versus-all area under the receiver operator characteristic curve (AUROC) were 0.979 (0.967, 0.991), 0.990 (0.985, 0.995), 0.976 (0.972, 0.981), and 0.968 (0.962, 0.974) for death, severe sepsis, non-severe sepsis, and bacteremia without sepsis respectively. The multi-class macro average AUROC and area under the precision recall curve were 0.977 and 0.316 respectively. The study findings were used to develop an automated early warning decision tool for sepsis. Implementation of this model in pediatric EDs will allow sepsis-related critical decompensation to be predicted accurately after a few seconds of triage.

摘要

本研究旨在开发和验证一种基于危急失代偿预测模型的脓毒症预警系统。收集了 2013 年 3 月至 2019 年 12 月期间,537837 次儿科急诊就诊的电子病历数据。建立了一个多类随机梯度提升模型,以识别与死亡、严重脓毒症、非严重脓毒症和菌血症相关的预警信号。模型特征包括分诊生命体征、之前的诊断、药物和在指数 ED 就诊前 6 个月内的医疗保健利用情况。有 483 名患者患有严重脓毒症和/或死亡,1102 名患者患有非严重脓毒症,1103 名患者有阳性菌血症检测结果,其余患者没有发生任何事件。最重要的预测因素是年龄、心率、上次住院的住院时间、体温、收缩压和之前的脓毒症。一对一的接收者操作特征曲线下面积(AUROC)分别为 0.979(0.967,0.991)、0.990(0.985,0.995)、0.976(0.972,0.981)和 0.968(0.962,0.974),用于死亡、严重脓毒症、非严重脓毒症和无脓毒症的菌血症。多类宏平均 AUROC 和精度召回曲线下面积分别为 0.977 和 0.316。研究结果用于开发一种用于脓毒症的自动预警决策工具。在儿科急诊中实施该模型,将允许在分诊几秒钟后准确预测与脓毒症相关的危急失代偿。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/352e/8060307/cf414aafb9a5/41598_2021_87595_Fig1_HTML.jpg

相似文献

3
Criticality index conducted in pediatric emergency department triage.儿科急诊科分诊中的危急度指数
Am J Emerg Med. 2021 Oct;48:209-217. doi: 10.1016/j.ajem.2021.05.004. Epub 2021 May 6.

本文引用的文献

6
A Quality Improvement Collaborative for Pediatric Sepsis: Lessons Learned.儿童脓毒症质量改进协作组:经验教训
Pediatr Qual Saf. 2017 Dec 29;3(1):e051. doi: 10.1097/pq9.0000000000000051. eCollection 2018 Jan-Feb.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验