Aix-Marseille Université, CNRS, iSm2, Marseille, France.
Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany.
Chem Commun (Camb). 2021 Apr 22;57(33):3952-3974. doi: 10.1039/d1cc00705j.
Quantum chemical approaches today are a powerful tool to study the properties and reactivity of metalloenzymes. In the field of solar fuels research these involve predominantly photosystem II and hydrogenases, which catalyze water oxidation and hydrogen evolution, as well as related biomimetic and bio-inspired models. Theoretical methods are extensively used to better comprehend the nature of catalytic intermediates, establish important structure-function and structure-property correlations, elucidate functional principles, and uncover the catalytic activity of these complex systems by unravelling the key steps of their reaction mechanism. Computations in the field of water oxidation and hydrogen evolution are used as predictive tools to elucidate structures, explain and synthesize complex experimental observations from advanced spectroscopic techniques, rationalize reactivity on the basis of atomistic models and electronic structure, and guide the design of new synthetic targets. This feature article covers recent advances in the application of quantum chemical methods for understanding the nature of catalytic intermediates and the mechanism by which photosystem II and hydrogenases achieve their function, and points at essential questions that remain only partly answered and at challenges that will have to be met by future advances and applications of quantum and computational chemistry.
量子化学方法如今是研究金属酶性质和反应性的有力工具。在太阳能燃料研究领域,这些方法主要涉及光合作用系统 II 和氢化酶,它们分别催化水氧化和氢气的生成,以及相关的仿生和生物启发模型。理论方法被广泛用于更好地理解催化中间体的本质,建立重要的结构-功能和结构-性质相关性,阐明功能原理,并通过揭示其反应机制的关键步骤来揭示这些复杂体系的催化活性。水氧化和氢气生成领域的计算被用作预测工具,以阐明结构,解释和综合来自先进光谱技术的复杂实验观察结果,根据原子模型和电子结构合理化反应性,并指导新合成目标的设计。本文综述了量子化学方法在理解光合作用系统 II 和氢化酶催化中间体的本质和功能机制方面的最新进展,并指出了仍未完全回答的关键问题和未来量子和计算化学的进展和应用所面临的挑战。