一种用于学习网络的成熟度网格评估工具。

A maturity grid assessment tool for learning networks.

作者信息

Lannon Carole, Schuler Christine L, Seid Michael, Provost Lloyd P, Fuller Sandra, Purcell David, Forrest Christopher B, Margolis Peter A

机构信息

James M. Anderson Center for Health Systems Excellence Cincinnati Children's Hospital Medical Center Cincinnati Ohio USA.

American Board of Pediatrics Chapel Hill North Carolina USA.

出版信息

Learn Health Syst. 2020 Jun 26;5(2):e10232. doi: 10.1002/lrh2.10232. eCollection 2021 Apr.

Abstract

BACKGROUND

The vision of learning healthcare systems (LHSs) is attractive as a more effective model for health care services, but achieving the vision is complex. There is limited literature describing the processes needed to construct such multicomponent systems or to assess development.

METHODS

We used the concept of a capability maturity matrix to describe the maturation of necessary infrastructure and processes to create learning networks (LNs), multisite collaborative LHSs that use an actor-oriented network organizational architecture. We developed a network maturity grid (NMG) assessment tool by incorporating information from literature review, content theory from existing networks, and expert opinion to establish domains and components. We refined the maturity grid in response to feedback from network leadership teams. We followed NMG scores over time for nine LNs and plotted scores for each domain component with respect to SD for one participating network. We sought subjective feedback on the experience of applying the NMG to individual networks.

RESULTS

LN leaders evaluated the scope, depth, and applicability of the NMG to their networks. Qualitative feedback from network leaders indicated that changes in NMG scores over time aligned with leaders' reports about growth in specific domains; changes in scores were consistent with network efforts to improve in various areas. Scores over time showed differences in maturation in the individual domains of each network. Scoring patterns, and SD for domain component scores, indicated consistency among LN leaders in some but not all aspects of network maturity. A case example from a participating network highlighted the value of the NMG in prompting strategic discussions about network development and demonstrated that the process of using the tool was itself valuable.

CONCLUSIONS

The capability maturity grid proposed here provides a framework to help those interested in creating Learning Health Networks plan and develop them over time.

摘要

背景

学习型医疗系统(LHS)作为一种更有效的医疗服务模式,其愿景颇具吸引力,但实现这一愿景却很复杂。描述构建此类多组件系统或评估其发展所需过程的文献有限。

方法

我们使用能力成熟度矩阵的概念来描述创建学习网络(LN)所需的基础设施和过程的成熟度,学习网络是一种使用面向参与者的网络组织结构的多站点协作式LHS。我们通过整合文献综述信息、现有网络的内容理论和专家意见来开发网络成熟度网格(NMG)评估工具,以确定领域和组件。我们根据网络领导团队的反馈对成熟度网格进行了完善。我们跟踪了九个LN随时间的NMG分数,并绘制了一个参与网络中每个领域组件相对于标准差的分数。我们寻求关于将NMG应用于各个网络的经验的主观反馈。

结果

LN领导者评估了NMG对其网络的范围、深度和适用性。网络领导者的定性反馈表明,NMG分数随时间的变化与领导者关于特定领域增长的报告一致;分数变化与网络在各个领域的改进努力一致。随时间的分数显示了每个网络各个领域成熟度的差异。评分模式以及领域组件分数的标准差表明,LN领导者在网络成熟度的某些但并非所有方面具有一致性。一个参与网络的案例突出了NMG在促进关于网络发展的战略讨论方面的价值,并表明使用该工具的过程本身就很有价值。

结论

本文提出的能力成熟度网格提供了一个框架,以帮助那些有兴趣创建学习健康网络的人随着时间的推移对其进行规划和发展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6db8/8051339/57c3f7969f0d/LRH2-5-e10232-g002.jpg

引用本文的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索