Suppr超能文献

小麦根系作为气候适应力的育种目标。

Wheat root systems as a breeding target for climate resilience.

机构信息

NIAB, 93 Lawrence Weaver Road, Cambridge, CB3 0LE, UK.

Centre for Crop Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, 4072, Australia.

出版信息

Theor Appl Genet. 2021 Jun;134(6):1645-1662. doi: 10.1007/s00122-021-03819-w. Epub 2021 Apr 26.

Abstract

In the coming decades, larger genetic gains in yield will be necessary to meet projected demand, and this must be achieved despite the destabilizing impacts of climate change on crop production. The root systems of crops capture the water and nutrients needed to support crop growth, and improved root systems tailored to the challenges of specific agricultural environments could improve climate resiliency. Each component of root initiation, growth and development is controlled genetically and responds to the environment, which translates to a complex quantitative system to navigate for the breeder, but also a world of opportunity given the right tools. In this review, we argue that it is important to know more about the 'hidden half' of crop plants and hypothesize that crop improvement could be further enhanced using approaches that directly target selection for root system architecture. To explore these issues, we focus predominantly on bread wheat (Triticum aestivum L.), a staple crop that plays a major role in underpinning global food security. We review the tools available for root phenotyping under controlled and field conditions and the use of these platforms alongside modern genetics and genomics resources to dissect the genetic architecture controlling the wheat root system. To contextualize these advances for applied wheat breeding, we explore questions surrounding which root system architectures should be selected for, which agricultural environments and genetic trait configurations of breeding populations are these best suited to, and how might direct selection for these root ideotypes be implemented in practice.

摘要

在未来几十年,为了满足预期需求,需要在产量方面取得更大的遗传进展,而这必须在气候变化对作物生产的不稳定影响下实现。作物的根系可以吸收支持作物生长所需的水分和养分,而针对特定农业环境挑战定制的改良根系可以提高气候适应能力。根系起始、生长和发育的每个组成部分都受到遗传控制,并对环境做出响应,这对育种者来说意味着一个复杂的定量系统,需要正确的工具才能应对,但这也为他们提供了广阔的机会。在这篇综述中,我们认为,了解作物的“隐性部分”很重要,并假设可以通过直接针对根系结构选择的方法进一步提高作物改良。为了探讨这些问题,我们主要关注面包小麦(Triticum aestivum L.),它是一种主要的粮食作物,在支撑全球粮食安全方面发挥着重要作用。我们回顾了在受控和田间条件下进行根系表型分析的工具,以及如何利用这些平台与现代遗传学和基因组学资源一起,剖析控制小麦根系的遗传结构。为了将这些进展应用于小麦育种,我们探讨了以下问题:应该选择哪些根系结构,这些结构最适合哪些农业环境和遗传群体的性状配置,以及如何在实践中直接选择这些根系理想型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d8e8/8206059/7bc2d0192a8c/122_2021_3819_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验