Suppr超能文献

基于非增强 CT 的急性缺血性卒中的人工智能定位。

Artificial intelligence for localization of the acute ischemic stroke by non-contrast computed tomography.

机构信息

Sirindhorn International Institute of Technology, Thammasat University, Pathum Thani, Thailand.

Division of Diagnostic Radiology, Department of Radiology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand.

出版信息

PLoS One. 2022 Dec 1;17(12):e0277573. doi: 10.1371/journal.pone.0277573. eCollection 2022.

Abstract

A non-contrast cranial computer tomography (ncCT) is often employed for the diagnosis of the early stage of the ischemic stroke. However, the number of false negatives is high. More accurate results are obtained by an MRI. However, the MRI is not available in every hospital. Moreover, even if it is available in the clinic for the routine tests, emergency often does not have it. Therefore, this paper proposes an end-to-end framework for detection and segmentation of the brain infarct on the ncCT. The computer tomography perfusion (CTp) is used as the ground truth. The proposed ensemble model employs three deep convolution neural networks (CNNs) to process three end-to-end feature maps and a hand-craft features characterized by specific contra-lateral features. To improve the accuracy of the detected infarct area, the spatial dependencies between neighboring slices are employed at the postprocessing step. The numerical experiments have been performed on 18 ncCT-CTp paired stroke cases (804 image-pairs). The leave-one-out approach is applied for evaluating the proposed method. The model achieves 91.16% accuracy, 65.15% precision, 77.44% recall, 69.97% F1 score, and 0.4536 IoU.

摘要

非对比性颅脑计算机断层扫描(ncCT)常用于缺血性中风早期的诊断。然而,假阴性的数量较高。MRI 可以获得更准确的结果。但是,并非每家医院都有 MRI。此外,即使诊所常规检查中配备有 MRI,紧急情况下也不一定有。因此,本文提出了一种用于检测和分割 ncCT 上脑梗死的端到端框架。计算机断层扫描灌注(CTp)用作真实数据。所提出的集成模型采用三个深度卷积神经网络(CNN)来处理三个端到端特征图和一个由特定对侧特征表示的手工特征。为了提高检测到的梗死区域的准确性,在后处理步骤中利用了相邻切片之间的空间依赖性。在 18 个 ncCT-CTp 配对中风病例(804 对图像)上进行了数值实验。采用留一法评估所提出的方法。该模型的准确率为 91.16%,精确率为 65.15%,召回率为 77.44%,F1 得分为 69.97%,IoU 为 0.4536。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6323/9714826/17899a20228f/pone.0277573.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验