Suppr超能文献

土壤传播性蠕虫种群生物学关键假设对可持续控制发病率的影响。

Impact of Key Assumptions About the Population Biology of Soil-Transmitted Helminths on the Sustainable Control of Morbidity.

机构信息

London Centre for Neglected Tropical Disease Research, Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom.

Medical Research Council Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, United Kingdom.

出版信息

Clin Infect Dis. 2021 Jun 14;72(Suppl 3):S188-S194. doi: 10.1093/cid/ciab195.

Abstract

The design and evaluation of control programs for soil-transmitted helminths (STHs) is based on surveillance data recording measurements of egg counts in the stool of infected individuals, which underpin estimates of the prevalence and average intensity of infection. There is considerable uncertainty around these measurements and their interpretation. The uncertainty is composed of several sources of measurement error and the limit of detection of fecal smear tests on the one hand, and key assumptions on STH biology on the other hand, including assumptions on the aggregation of worms within hosts and on the impact of density-dependent influences on worm reproduction. Using 2 independently developed models of STH transmission we show how different aspects of STH biology and human behavior impact on STH surveillance and control programs and how accounting for uncertainty can help to develop optimal and sustainable control strategies to meet the World Health Organization (WHO) morbidity target for STHs.

摘要

土壤传播性蠕虫(STHs)控制规划的设计和评估基于对受感染者粪便中虫卵计数的监测数据记录测量,这为流行率和平均感染强度的估计提供了依据。这些测量及其解释存在相当大的不确定性。这种不确定性由几个测量误差源以及粪便涂片检测的检测限组成,另一方面,还包括对 STH 生物学的关键假设,包括对宿主内蠕虫聚集和密度依赖性对蠕虫繁殖影响的假设。本文使用两种独立开发的 STH 传播模型,展示了 STH 生物学和人类行为的不同方面如何影响 STH 监测和控制规划,以及如何考虑不确定性有助于制定最佳和可持续的控制策略,以实现世界卫生组织(WHO)对 STH 的发病率目标。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/431e/8218855/6c0d6d065285/ciab195_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验