Suppr超能文献

一种基于大规模图表示学习预测药物-靶点相互作用的新方法。

A Novel Method to Predict Drug-Target Interactions Based on Large-Scale Graph Representation Learning.

作者信息

Zhao Bo-Wei, You Zhu-Hong, Hu Lun, Guo Zhen-Hao, Wang Lei, Chen Zhan-Heng, Wong Leon

机构信息

The Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences, Urumqi 830011, China.

University of Chinese Academy of Sciences, Beijing 100049, China.

出版信息

Cancers (Basel). 2021 Apr 27;13(9):2111. doi: 10.3390/cancers13092111.

Abstract

Identification of drug-target interactions (DTIs) is a significant step in the drug discovery or repositioning process. Compared with the time-consuming and labor-intensive in vivo experimental methods, the computational models can provide high-quality DTI candidates in an instant. In this study, we propose a novel method called LGDTI to predict DTIs based on large-scale graph representation learning. LGDTI can capture the local and global structural information of the graph. Specifically, the first-order neighbor information of nodes can be aggregated by the graph convolutional network (GCN); on the other hand, the high-order neighbor information of nodes can be learned by the graph embedding method called DeepWalk. Finally, the two kinds of feature are fed into the random forest classifier to train and predict potential DTIs. The results show that our method obtained area under the receiver operating characteristic curve (AUROC) of 0.9455 and area under the precision-recall curve (AUPR) of 0.9491 under 5-fold cross-validation. Moreover, we compare the presented method with some existing state-of-the-art methods. These results imply that LGDTI can efficiently and robustly capture undiscovered DTIs. Moreover, the proposed model is expected to bring new inspiration and provide novel perspectives to relevant researchers.

摘要

药物-靶点相互作用(DTIs)的识别是药物发现或重新定位过程中的重要一步。与耗时且费力的体内实验方法相比,计算模型能够即时提供高质量的DTI候选物。在本研究中,我们提出了一种名为LGDTI的新方法,用于基于大规模图表示学习预测DTIs。LGDTI能够捕捉图的局部和全局结构信息。具体而言,节点的一阶邻居信息可通过图卷积网络(GCN)进行聚合;另一方面,节点的高阶邻居信息可通过名为DeepWalk的图嵌入方法来学习。最后,将这两种特征输入到随机森林分类器中,以训练和预测潜在的DTIs。结果表明,在五折交叉验证下,我们的方法获得的受试者工作特征曲线下面积(AUROC)为0.9455,精确率-召回率曲线下面积(AUPR)为0.9491。此外,我们将所提出的方法与一些现有的先进方法进行了比较。这些结果表明LGDTI能够高效且稳健地捕捉未发现的DTIs。此外,所提出的模型有望为相关研究人员带来新的启发并提供新的视角。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/29d9/8123765/01830fb7eecd/cancers-13-02111-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验