Suppr超能文献

人工神经网络-药代动力学模型及其使用 Shapley 加法解释的解释。

An artificial neural network-pharmacokinetic model and its interpretation using Shapley additive explanations.

机构信息

Department of Medical Pharmaceutics, Graduate School of Medical and Pharmaceutical Sciences for Research, University of Toyama, Toyama, Japan.

Center for Pharmacist Education, School of Pharmacy, Nihon University, Chiba, Japan.

出版信息

CPT Pharmacometrics Syst Pharmacol. 2021 Jul;10(7):760-768. doi: 10.1002/psp4.12643. Epub 2021 May 27.

Abstract

We developed a method to apply artificial neural networks (ANNs) for predicting time-series pharmacokinetics (PKs), and an interpretable the ANN-PK model, which can explain the evidence of prediction by applying Shapley additive explanations (SHAP). A previous population PK (PopPK) model of cyclosporin A was used as the comparison model. The patients' data were used for the ANN-PK model input, and the output by ANN was the clearance (CL). The estimated CL value from the ANN were substituted into the one-compartment with one-order absorption model, the concentrations were calculated, and the parameters of ANN were updated by the back-propagation method. Kernel SHAP was applied to the trained model and the SHAP value of each input was calculated. The root mean squared error for the PopPK model and the ANN-PK model were 41.1 and 31.0 ng/ml, respectively. The goodness of fit plots for the ANN-PK model represented more convergence to y = x compared with that for the PopPK model, with good model performance for the ANN-PK model. The most influential factors on CL output were age and body weight from the evaluation using Kernel SHAP, and these factors were incorporated into the PopPK model as the significant covariates of CL. The ANN-PK model could handle time-series data and showed higher prediction accuracy then the conventional PopPK model, and the scientific validity for the model could be evaluated by applying SHAP. Study Highlights WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC? A black-box property of an artificial neural network (ANN) decreases the scientific confidence of the model, and making it difficult to utilize the ANN in the medical field. Moreover, difficulty in handling the time-series data is a significant problem for applying the ANN for pharmacometrics study. WHAT QUESTION DID THIS STUDY ADDRESS? How can we apply the ANN for predicting the time-series pharmacokinetics (PKs) , and confirm the scientific validity of the ANN model? WHAT DOES THIS STUDY ADD TO OUR KNOWLEDGE? Using the ANN in combination with a conventional compartment (ANN-PK) model enabled to handle the time-series PK data, and the predicting performance of the model was higher than that of the population PK model. Furthermore, we could evaluate the scientific validity of the ANN model by applying the Shapley additive explanations. HOW MIGHT THIS CHANGE DRUG DISCOVERY, DEVELOPMENT, AND/OR THERAPEUTICS? We expect that our study will contribute to develop the interpretable ANN model, which can predict the time-series PKs, drug efficacies, and side effects with high prediction performance.

摘要

我们开发了一种应用人工神经网络(ANNs)预测时间序列药代动力学(PKs)的方法,以及一种可解释的 ANN-PK 模型,该模型可以通过应用 Shapley 加性解释(SHAP)来解释预测证据。以前的环孢素 A 群体 PK(PopPK)模型被用作比较模型。将患者数据用作 ANN-PK 模型的输入,ANN 的输出是清除率(CL)。将 ANN 估计的 CL 值代入单室一阶吸收模型,计算浓度,并通过反向传播法更新 ANN 的参数。应用核 SHAP 对训练模型进行处理,并计算每个输入的 SHAP 值。PopPK 模型和 ANN-PK 模型的均方根误差分别为 41.1 和 31.0 ng/ml。ANN-PK 模型的拟合优度图表示与 PopPK 模型相比,y 更接近 x,表明 ANN-PK 模型具有良好的模型性能。使用核 SHAP 进行评估,对 CL 输出影响最大的因素是年龄和体重,并且这些因素被纳入 PopPK 模型作为 CL 的显著协变量。ANN-PK 模型可以处理时间序列数据,并且比传统的 PopPK 模型具有更高的预测精度,并且可以通过应用 SHAP 来评估模型的科学有效性。研究亮点 关于该主题的当前知识是什么? 人工神经网络(ANN)的黑盒性质降低了模型的科学可信度,并且难以在医学领域中利用 ANN。此外,处理时间序列数据的困难是将 ANN 应用于药代动力学研究的一个重大问题。 这项研究解决了什么问题? 我们如何应用 ANN 来预测时间序列药代动力学(PKs),并确认 ANN 模型的科学有效性? 这项研究为我们的知识增加了什么? 将 ANN 与传统的隔室(ANN-PK)模型结合使用,能够处理时间序列 PK 数据,并且该模型的预测性能高于群体 PK 模型。此外,我们可以通过应用 Shapley 加性解释来评估 ANN 模型的科学有效性。 这将如何改变药物发现、开发和/或治疗? 我们预计,我们的研究将有助于开发可解释的 ANN 模型,该模型可以通过高预测性能预测时间序列 PKs、药物疗效和副作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b870/8302242/b60d259863d4/PSP4-10-760-g004.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验