Suppr超能文献

氨基酸还原有助于提高抗菌肽的鉴定及其功能活性。

Amino Acid Reduction Can Help to Improve the Identification of Antimicrobial Peptides and Their Functional Activities.

作者信息

Dong Gai-Fang, Zheng Lei, Huang Sheng-Hui, Gao Jing, Zuo Yong-Chun

机构信息

Inner Mongolia Autonomous Region Key Laboratory of Big Data Research and Application of Agriculture and Animal Husbandry, College of Computer and Information Engineering, Inner Mongolia Agricultural University, Hohhot, China.

The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, China.

出版信息

Front Genet. 2021 Apr 20;12:669328. doi: 10.3389/fgene.2021.669328. eCollection 2021.

Abstract

Antimicrobial peptides (AMPs) are considered as potential substitutes of antibiotics in the field of new anti-infective drug design. There have been several machine learning algorithms and web servers in identifying AMPs and their functional activities. However, there is still room for improvement in prediction algorithms and feature extraction methods. The reduced amino acid (RAA) alphabet effectively solved the problems of simplifying protein complexity and recognizing the structure conservative region. This article goes into details about evaluating the performances of more than 5,000 amino acid reduced descriptors generated from 74 types of amino acid reduced alphabet in the first stage and the second stage to construct an excellent two-stage classifier, Identification of Antimicrobial Peptides by Reduced Amino Acid Cluster (iAMP-RAAC), for identifying AMPs and their functional activities, respectively. The results show that the first stage AMP classifier is able to achieve the accuracy of 97.21 and 97.11% for the training data set and independent test dataset. In the second stage, our classifier still shows good performance. At least three of the four metrics, sensitivity (SN), specificity (SP), accuracy (ACC), and Matthews correlation coefficient (MCC), exceed the calculation results in the literature. Further, the ANOVA with incremental feature selection (IFS) is used for feature selection to further improve prediction performance. The prediction performance is further improved after the feature selection of each stage. At last, a user-friendly web server, iAMP-RAAC, is established at http://bioinfor.imu.edu. cn/iampraac.

摘要

抗菌肽(AMPs)被认为是新抗感染药物设计领域中抗生素的潜在替代品。在识别抗菌肽及其功能活性方面已经有几种机器学习算法和网络服务器。然而,预测算法和特征提取方法仍有改进空间。简化氨基酸(RAA)字母表有效解决了简化蛋白质复杂性和识别结构保守区域的问题。本文详细介绍了评估在第一阶段和第二阶段从74种简化氨基酸字母表生成的5000多种简化氨基酸描述符的性能,以构建一个出色的两阶段分类器——通过简化氨基酸聚类识别抗菌肽(iAMP-RAAC),分别用于识别抗菌肽及其功能活性。结果表明,第一阶段的抗菌肽分类器对于训练数据集和独立测试数据集能够分别达到97.21%和97.11%的准确率。在第二阶段,我们的分类器仍然表现出良好的性能。四个指标中的至少三个,即灵敏度(SN)、特异性(SP)、准确率(ACC)和马修斯相关系数(MCC),超过了文献中的计算结果。此外,使用带有增量特征选择(IFS)的方差分析进行特征选择以进一步提高预测性能。每个阶段进行特征选择后,预测性能进一步提高。最后,在http://bioinfor.imu.edu.cn/iampraac建立了一个用户友好的网络服务器iAMP-RAAC。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd93/8093877/e04c29628286/fgene-12-669328-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验