Forschungszentrum Jülich GmbH, Jülich Centre for Neutron Science JCNS and Peter Grünberg Institut PGI, JARA-FIT, 52425, Jülich, Germany.
Lehrstuhl für Experimentalphysik IVc, RWTH Aachen University, 52056, Aachen, Germany.
Adv Mater. 2021 Jun;33(24):e2008683. doi: 10.1002/adma.202008683. Epub 2021 May 7.
Self-assembly of iron oxide nanoparticles (IONPs) into 1D chains is appealing, because of their biocompatibility and higher mobility compared to 2D/3D assemblies while traversing the circulatory passages and blood vessels for in vivo biomedical applications. In this work, parameters such as size, concentration, composition, and magnetic field, responsible for chain formation of IONPs in a dispersion as opposed to spatially confining substrates, are examined. In particular, the monodisperse 27 nm IONPs synthesized by an extended LaMer mechanism are shown to form chains at 4 mT, which are lengthened with applied field reaching 270 nm at 2.2 T. The chain lengths are completely reversible in field. Using a combination of scattering methods and reverse Monte Carlo simulations the formation of chains is directly visualized. The visualization of real-space IONPs assemblies formed in dispersions presents a novel tool for biomedical researchers. This allows for rapid exploration of the behavior of IONPs in solution in a broad parameter space and unambiguous extraction of the parameters of the equilibrium structures. Additionally, it can be extended to study novel assemblies formed by more complex geometries of IONPs.
将氧化铁纳米粒子 (IONP) 自组装成一维链是吸引人的,因为与二维/三维组装相比,它们具有更好的生物相容性和更高的迁移率,而在穿越循环通道和血管进行体内生物医学应用时更是如此。在这项工作中,研究了大小、浓度、组成和磁场等参数,这些参数负责在分散体中而不是在空间限制的衬底中形成 IONP 的链。特别是,通过扩展的 LaMer 机制合成的单分散 27nm IONP 在 4mT 下形成链,随着施加的场增加,在 2.2T 下达到 270nm 的长度。链长在磁场中完全可逆。通过散射方法和反向蒙特卡罗模拟的组合,直接可视化了链的形成。在分散体中形成的实空间 IONP 组装的可视化为生物医学研究人员提供了一种新工具。这允许在广泛的参数空间中快速探索 IONP 在溶液中的行为,并明确提取平衡结构的参数。此外,它可以扩展到研究由更复杂的 IONP 几何形状形成的新型组装。